Page 249 - Carbon Nanotube Fibres and Yarns
P. 249
Sensors based on CNT yarns 239
[33] D.C. Betz, G. Thursby, B. Culshaw, W.J. Staszewski, Advanced layout of a fiber Bragg
grating strain gauge rosette, J. Lightwave Technol. 24 (2006) 1019–1026.
[34] M. Wun–Fogle, H.T. Savage, A.E. Clark, Sensitive, wide frequency range magnetostric-
tive strain gauge, Sensors Actuators 12 (1987) 323–−331.
[35] W.Y. Du, Resistive, Capacitive, Inductive, and Magnetic Sensor Technologies, CRC
Press, Boca Raton, FL, 2014.
[36] J.W. Dally, W.F. Riley, Experimental Stress Analysis, third ed., McGraw-Hill, New York,
NY, 1991.
[37] W. Lu, M. Zu, J.H. Byun, B.S. Kim, T.W. Chou, State of the art of carbon nanotube
fibers: opportunities and challenges, Adv. Mater. 24 (2012) 1805–1833.
[38] C. Jayasinghe, W. Li, Y. Song, J.L. Abot, V.N. Shanov, S. Fialkova, Nanotube responsive
materials, MRS Bull. 35 (2010) 682–692.
[39] J.L. Abot, Y. Song, M. Sri Vatsavaya, S. Medikonda, Z. Kier, C. Jayasinghe, et al., De-
lamination detection with carbon nanotube thread in self-sensing composite materials,
Compos. Sci. Technol. 70 (2010) 1113–1119.
[40] J.L. Abot, J.C. Anike, J.H. Bills, Z. Onorato, D.L. Gonteski, T. Kvelashvili, et al., Carbon
nanotube yarn sensors for precise monitoring of damage evolution in laminated composite
materials: latest experimental results and in-situ and post-testing validation, in: Proceedings
of the 32nd American Society for Composites Conference, West Lafayette, IN, 2017.
[41] X. Ma, Y. Dong, R. Li, Monitoring technology in composites using carbon nanotube
yarns based on piezoresistivity, Mater. Lett. 188 (2017) 45–47.
[42] J.L. Abot, K. Wynter, S.P. Mortin, H. Borges de Quadros, H.H. Le, D.C. Renner, et al.,
Localized detection of damage in laminated composite materials using carbon nano-
tube yarn sensors, J. Multifunct. Compos. 2 (2014) 217–226.
[43] J.C. Anike, J.L. Abot, J. Bills, D.L. Gonteski, T. Kvelashvili, M.S. Alsubhani, et al., In-
tegrated structural health monitoring of composite laminates using carbon nanotube
fibers: static/dynamic loading and validation, in: Proceedings of the 21st International
Conference on Composite Materials, Xian, China, 2017.
[44] K. Liu, Y. Sun, R. Zhou, H. Zhu, J. Wang, L. Liu, et al., Carbon nanotube yarns with
high tensile strength made by a twisting and shrinking method, Nanotechnology 2
(2010) 045708.
[45]. J.C. Anike, Carbon nanotube yarns: Tailoring their Piezoresistive response towards
sensing applications, PhD Dissertation, Department of Mechanical Engineering, The
Catholic University of America, Washington, DC, USA, 2018.
[46] A.S. Wu, X. Nie, M.C. Hudspeth, W.W. Chen, T.W. Chou, D.S. Lashmore, et al., Car-
bon nanotube fibers as torsion sensors. Appl. Phys. Lett. 100 (2012) 201908, https://
doi.org/10.1063/1.4719058.
[47] K. Suzuki, K. Yataka, Y. Okumiya, S. Sakakibara, K. Sako, H. Mimura, et al., Rapid-response,
widely stretchable sensor of aligned MWCNT/elastomer composites for human motion
detection, ACS Sens. 1 (2016) 817–825, https://doi.org/10.1021/acssensors.6b00145.
[48] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba,
et al., A stretchable carbon nanotube strain sensor for human-motion detection, Nat.
Nanotechnol. 6 (2011), https://doi.org/10.1038/NNANO.2011.36.
[49] M.K. Shin, J. Oh, M. Lima, M.E. Kozlov, S.J. Kim, R.H. Baughman, Elastomeric
conductive composites based on carbon nanotube forests, Adv. Mater. 22 (2010) 2663–
2667, https://doi.org/10.1002/adma.200904270.
[50] J. Foroughi, G.M. Spinks, S. Aziz, A. Mirabedini, A. Jeiranikhameneh, G.G. Wallace,
et al., Knitted carbon-nanotube-sheath/spandex-core elastomeric yarns for artificial
muscles and strain sensing, ACS Nano 10 (2016) 9129–9135, https://doi.org/10.1021/
acsnano.6b04125.
[51] L. Cai, L. Song, P. Luan, Q. Zhang, N. Zhang, Q. Gao, et al., Super-stretchable, trans-
parent carbon nanotube-based capacitive strain sensors for human motion detection,
Sci. Rep. 3 (2013).