Page 250 - Carbon Nanotube Fibres and Yarns
P. 250
240 Carbon Nanotube Fibers and Yarns
[52] T. Takahashi, K. Takei, A.G. Gillies, R.S. Fearing, A. Javey, Carbon nanotube
active-matrix backplanes for conformal electronics and sensors, Nano Lett. 11 (2011)
5408–5413.
[53] S. Ryu, P. Lee, J.B. Chou, R. Xu, R. Zhao, J.H. Anastasios, et al., Extremely elastic
wearable carbon nanotube fiber strain sensor for monitoring of human motion, ACS
Nano 9 (2015) 5929–5936, https://doi.org/10.1021/acsnano.5b00599.
[54] S. Park, M. Vosguerichian, Z. Bao, A review of fabrication and applications of carbon
nanotube film-based flexible electronics, Nanoscale 5 (2013) 1727–1752.
[55] Q. Cao, J.A. Rogers, Ultrathin films of single-walled carbon nanotubes for electronics
and sensors: a review of fundamental and applied aspects, Adv. Mater. 21 (2009) 29–53,
https://doi.org/10.1002/adma.200801995.
[56] L. Cai, P. Luan, Q. Zhang, N. Zhang, Q. Gao, D. Zhao, et al., Highly transparent and
conductive stretchable conductors based on hierarchical reticulate single-walled carbon
nanotube architecture, Adv. Funct. Mater. 22 (2012) 5238–5244.
[57] K.L. Jiang, J.P. Wang, Q.Q. Li, L.A. Liu, C.H. Liu, S.S. Fan, Superaligned car-
bon nanotube arrays, films, and yarns: a road to applications, Adv. Mater. 23 (2011)
1154–1161, https://doi.org/10.1002/adma.201003989.
[58] C.L. Wang, R. Cheng, L. Liao, X.F. Duan, High performance thin film electronics
based on inorganic nanostructures and composites, Nano Today 8 (2013) 514–530,
https://doi.org/10.1016/j.nantod.2013.08.001.
[59] M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: pres-
ent and future commercial applications, Science 339 (2013) 535–539, https://doi.
org/10.1126/science.1222453.
[60] D.J. Lipomi, M. Vosgueritchian, B.C. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, et al.,
Skin-like pressure and strain sensors based on transparent elastic films of carbon nano-
tubes, Nat. Nanotechnol. (12) (2011) 788–792.
[61] B.L. Liu, C. Wang, J. Liu, Y.C. Che, C.W. Zhou, Aligned carbon nanotubes: from con-
trolled synthesis to electronic applications, Nanoscale 20 (2013) 9483–9502, https://
doi.org/10.1039/c3nr02595k.
[62] C. Wang, K. Takei, T. Takahashi, A. Javey, Carbon nanotube electronics—Moving for-
ward, Chem. Soc. Rev. (7) (2013) 2592–2609.
[63] L.B. Hu, D.S. Hecht, G. Gruner, Carbon nanotube thin films: fabrication, proper-
ties, and applications, Chem. Rev. 10 (2010) 5790–5844, https://doi.org/10.1021/
cr9002962.
[64] J.L. Abot, C.Y. Kiyono, G.P. Thomas, E.C.N. Silva, Strain gauge sensors comprised of
carbon nanotube yarn: parametric numerical analysis of their piezoresistive response,
Smart Mater. and Struct. 24 (2015) 075018.
[65] J.L. Abot, C.Y. Kiyono, J.C. Anike, M.R. Góngora-Rubio, L.A.M. Mello, V.F.
Cardoso, et al., Foil strain gauges using piezoresistive carbon nanotube yarn: fabrication
and calibration, Sensors (2) (2018) 464, https://doi.org/10.3390/s18020464.
[66] A.L. Window, Strain Gauge Technology, second ed., Elsevier Applied Science, London,
England, 1992.
[67] C. Liu, Piezoresistive sensors, in: Foundations of MEMS, second ed., Prentice Hall,
Upper Saddle River, NJ, 2012.
[68] J.S. Bulmer, A. Lekawa-Raus, D.G. Rickel, F.F. Balakirev, K.K. Koziol, Extreme
magneto-transport of bulk carbon nanotubes in sorted electronic concentrations and
aligned high performance fiber, Sci. Rep.-UK 7 (2017) 12193.
[69] A. Lekawa-Raus, J. Patmore, L. Kurzepa, J. Bulmer, K. Koziol, Electrical properties
of carbon nanotube based fibers and their future use in electrical wiring, Adv. Funct.
Mater. 24 (2014) 3661–3682, https://doi.org/10.1002/adfm.201303716.
[70] X. Zhang, Q. Li, Y. Tu, Y. Li, J.Y. Coulter, L. Zheng, et al., Strong carbon-nanotube
fibers spun from long carbon-nanotube arrays, Small 3 (2007) 244.