Page 248 - Carbon Nanotube Fibres and Yarns
P. 248
238 Carbon Nanotube Fibers and Yarns
[8] H.H. Le, G. Brodeur, M. Cen-Puc, J.J. Ku-Herrera, F. Avilés, J.L. Abot, Piezoresistive
and thermo-piezoresistive response of constrained carbon nanotube yarns towards their
use as integrated sensors, in: Proceedings of 31st American Society for Composites
Conference, Williamsburg, VA, 2016.
[9] W. Zhou, J. Vavro, C. Guthy, K.I. Winey, J.E. Fischer, L.M. Ericson, et al., Single wall
carbon nanotube fibers extruded from super-acid suspensions: preferred orientation,
electrical, and thermal transport, J. Appl. Phys. 95 (2004) 650.
[10] C. Li, E.T. Thostenson, T.-W. Chou, Sensors and actuators based on carbon nanotubes
and their composites: a review, Compos. Sci. Technol. 68 (2008) 1227–1249.
[11] H. Zhao, Y. Zhang, P.D. Bradford, Q. Zhou, Q. Jia, F. Yuan, et al., Carbon nanotube
yarn strain sensors, Nanotechnology 21 (2010) 305502.
[12] J.C. Anike, A. Bajar, J.L. Abot, Time-dependent effects on the coupled
mechanical-electrical response of carbon nanotube yarns under tensile loading,
J. Carbon Res. 2 (2016) 3.
[13] W. Obitayo, T. Liu, A review: carbon nanotube-based piezoresistive strain sensors.
J. Sensors (2012) 652438, https://doi.org/10.1155/2012/652438.
[14] J.G. Simmons, Generalized formula for the electric tunnel effect between similar elec-
trodes separated by a thin insulating film, J. Appl. Phys. 34 (1963) 1793–1803.
[15] J.C. Anike, K. Belay, J.L. Abot, Piezoresistive response of carbon nanotube yarns under
tension: rate effects and phenomenology, New Carbon Mater. 33 (2) (2018) 140–154.
[16] C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth, C. Hierold, Nano-
electromechanical displacement sensing based on single-walled carbon nanotubes,
Nano Lett. (7) (2006) 1449–1453.
[17] C. Boller, F.K. Chang, Y. Fujino, Encyclopedia of Structural Health Monitoring, Wiley,
Chichester, England, 2009.
[18] R. He, P. Yang, Giant piezoresistance effect in silicon nanowires, Nat. Nanotech. 42
(2006) 42–46.
[19] R.M. Langdon, Resonant sensors—a review, J. Phys. E Sci. Instrum. 18 (1985)
103–115.
[20] G. Stemme, Resonant silicon sensors, J. Micromech. Microeng. 1 (1991) 113–125.
[21] J.W. Gardner, V.K. Varadan, O.O. Awadelkarim, Microsensors, MEMS and Smart
Devices, Wiley, New York, NY, 2001.
[22] J. Sirohi, I. Chopra, Fundamental understanding of piezoelectric strain sensors,
J. Intel. Mat. Syst. Str. 11 (2000) 246–257.
[23] C. Liu, Piezoelectric sensing and actuation, in: Foundations of MEMS, second ed.,
Prentice Hall, Upper Saddle River, NJ, 2012.
[24] W.C. Heerens, Application of capacitance techniques in sensor design, J. Phys. E Sci.
Instrum. 19 (1986) 897–906.
[25] R. Puers, Capacitive sensors: when and how to use them, Sensor. Actuat. A-Phys. 38
(1993) 93–105.
[26] L.K. Baxter, Capacitive Sensors: Design and Applications, Wiley−IEEE Press, Piscata-
way, NJ, 1996.
[27] L.L. Chu, L. Que, Y.B. Gianchandani, Measurements of material properties using dif-
ferential capacitive strain sensors, J. Microelectromech. Syst. 11 (2002) 489–498.
[28] J.D. Weiss, Fiber-optic strain gauge, J. Lightwave Tech. 7 (1989) 1308–1318.
[29] J. Dakin, B. Culshaw, Optical Fiber Sensors: Principals and Components, vol. 1,
Artech, Boston, MA, 1988.
[30] B. Culshaw, J. Dakin, Optical Fiber Sensors: Systems and Applications, vol. 2, Artech,
Norwood, MA, 1989.
[31] E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists, Wiley, New
York, NY, 1991.
[32] R.M. Measures, Structural Monitoring With Fiber Optic Technology, Academic Press,
San Diego, CA, 2001.