Page 185 - Chemical process engineering design and economics
P. 185
Process Heat Transfer 167
Table 4.3 Approximate Heat Transfer Coefficients for Shell-and-Tube
Heat Exchangers (Source Ref. 27 with permission.)
To convert w/m = K to Btu/h-ft^F multiply by 0.1761
2
1
l
Fluid Conditions h,WAn K * Fouling resistance,
m'K/W'
Sensible heat transfer
Water*
1
Liquid 5000-7500 IxlO" - 2.5x10''
Ammonia
Liquid 6000-8000 0-1 xlO 4
Light organics'
l
Liquid 1500-2000 Ixl0- -2xl0- 1
Medium organics*
Liquid 750-1500 UxlO-'-4xlO J
Heavy organics'
Liquid,
Heating 250-750 2x10^-3x10-'
Cooling 150-400 2xlO''-3xlO-*
Very Heavy
Organics' Liquid,
l
Heating 100-300 4xlO- -3xlO J
l
Cooling 60-150 4*10- -3xlO J
Gas"
Pressure lOO-MOkN/m 1 80 -125 0-1 x 10- 1
abs
Gas*
3
Pressure 1 MN/m abs 250-400 0-1 x Iff 4
Gas 1 Pressure 10 MN/m* abs
500-800 0-1 x 10 J
Condensing heat transfer
Steam, ammonia Pressure lOkN/m 2
Abs, no noncondensables'
8000-12000 0-1 xlO" 4
Steam, ammonia Pressure lOkN/m* abs 1%
noncondensables*
4000-6000 0-1x10^
Pressure lOkN/m* abs 4%
Steam, ammonia noncondensabks
1
Pressure 100 kN/m abs, 2000-3000 0-1 x 10 J
1
no condensables" *'
Steam, ammonia
2
Pressure 1 MN/m abs no
1
condensables'- " 10000-15000 0-1 xlO 4
Steam, ammonia Pure component, pressure
2
10 kN/m abs, no non-
Copyright © 2003 by Taylor & Francis Group LLC