Page 22 - Circuit Analysis II with MATLAB Applications
P. 22

Chapter 1  Second Order Circuits


                                             k +  k =  – 12.5                                   (1.24)
                                              1
                                                  2
        Also,
                               dv    dv    i       dv        i 0        5
                                       C
                                 C
                                           L
                                                     C
                                                             L
                     i =  i =  C--------   -------- =  ---- and --------  =  ------------ =  ------------------------- =  300  (1.25)
                          C
                      L
                                dt
                                     dt
                                           C
                                                    dt
                                                       t =  0  C    100   10 – 3
                                                                    --------- u
                                                                     6
        Next, we differentiate (1.23), we evaluate it at t =  0  and equate it with (1.25). Then,
                       dv            – 200t     – 300t     dv
                         C
                       -------- =  – 200k e  – 300k e     and   -------- C  =  – 200k 300k 2    (1.26)
                                                                           –
                                   1
                                              2
                                                                          1
                        dt                                  dt
                                                               t =  0
        Equating the right sides of (1.25) and (1.26) we get
                                            – 200k 300k =    300
                                                   –
                                                  1
                                                        2
        or
                                               k – – 1.5k =  1.5                                (1.27)
                                                      2
                                                1
        From (1.24) and (1.27), we get k =  – 34.5  and k =  22 . By substitution into (1.23), we obtain the
                                       1
                                                       2
        total solution as
                                  v t   =     22e – 300t – 34.5e – 200t +  15 u t               (1.28)

                                                                  0
                                    C
        Check with MATLAB:
        syms t                                         %  Define symbolic variable t
        y0=22*exp( 300*t) 34.5*exp( 200*t)+15;         %  The total solution y(t)
        y1=diff(y0)                                    %  The first derivative of y(t)
        y1 =
        -6600*exp(-300*t)+6900*exp(-200*t)
        y2=diff(y0,2)                                  %  The second derivative of y(t)
        y2 =
        1980000*exp(-300*t)-1380000*exp(-200*t)
        y=y2+500*y1+60000*y0                           %  Summation of y and its derivatives
        y =
        900000


        Using the expression for v t    we can find the current as
                                 C
                               dv    100     – 3     – 200t    – 300t     – 200t   – 300t
                                 C
                i=  i =  i C  C-------- =  --------- u  10  =  6900e  – 6600e     =  115e  – 110e  A  (1.29)
                    L
                                      6
                               dt
        1-10                                                Circuit Analysis II with MATLAB Applications
                                                                                  Orchard Publications
   17   18   19   20   21   22   23   24   25   26   27