Page 30 - Circuit Analysis II with MATLAB Applications
P. 30

Chapter 1  Second Order Circuits


                                                       0
                                                             0
                                            v0   =  k e +  k e =  5
                                                     1
                                                           2
        or
                                               k +  k =  5                                      (1.51)
                                                    2
                                                1
        The second equation that is needed for the computation of the values of k 1  and k 2  is found from
                                                                   dv      dv
                                                                     C
        other initial condition, that is, i 0   =  2A . Since  i t   =  C-------- =  C------  , we differentiate (1.50),
                                       L
                                                          C
                                                                    dt
                                                                           dt
        evaluate it at t =  0 + , and we equate it with this initial condition.Then,
                            dv         – 4t    – 16t     dv
                            ------=  – 4k e – 16k e     and ------  =  – 4k 16k                 (1.52)
                                                                      –
                             dt      1       2           dt           1    2
                                                            t =  0 +
        Also, at t =  0 +
                                        1    +      +     dv
                                        ---v0       i 0     +  + C------  =  10
                                                 L
                                        R                 dt    +
                                                             t =  0
                       dv
        and solving for ------   we get
                       dt
                          t =  0 +
                                                  –
                                                         –
                                      dv        10 5 32 2
                                                     e
                                      ------  =  ------------------------------- =  502         (1.53)
                                      dt           1640
                                                    e
                                         t =  0 +
        Next, equating (1.52) with (1.53) we get
                                                   –
                                               – 4k 16k =   502
                                                  1
                                                        2
        or
                                             – 2k 8– k =  251                                   (1.54)
                                                     2
                                                1
        Simultaneous solution of (1.51) and (1.54) yields k =  291 6 , k =  – 261 6 , and by substitution
                                                                 e
                                                                               e
                                                         1
                                                                      2
        into (1.50) we get the total response as
                          vt  =  v t   =  291 – 4t 261 – 16t  =  1 -  – 4t  261e – 16t    V     (1.55)
                                       ---------e –
                                               ---------e
                                                          -- 291e –
                                 n
                                        6
                                                          6
                                                6
        Check with MATLAB:
        syms t                                     %  Define symbolic variable t
        y0=291*exp( 4*t)/6 261*exp( 16*t)/6;       %  Let solution v(t) = y0
        y1=diff(y0)                                % Compute and display first derivative
        y1 =
        -194*exp(-4*t)+696*exp(-16*t)


        1-18                                                Circuit Analysis II with MATLAB Applications
                                                                                  Orchard Publications
   25   26   27   28   29   30   31   32   33   34   35