Page 34 - Circuit Analysis II with MATLAB Applications
P. 34

Chapter 1  Second Order Circuits

        Then,
                                          dv       – 8t           – 8t
                                          ------=  – 8e    5 +  k t +  k e

                                           dt             2     2
        and

                                             dv
                                             ------  =  – 40 +  k                               (1.63)
                                             dt             2
                                                t =  0
                     dv    dv   i
        Also, i =  C------  or ------ =  ---- C   and
               C
                     dt
                                 C
                           dt
                                                  +          +      +
                                    dv      =  i 0      I i 0 –  R     i 0     –                (1.64)
                                                       S
                                              C
                                                                 L
                                              --------------- =
                                    ------
                                                      -------------------------------------------
                                    dt          C            C
                                       t =  0 +
        or
                                                                     7.875
                      dv     =  I –  v 0   R –  i 0    10 5 40 –  2  ---------------- =  5040   (1.65)
                                                        –
                                         e
                                                          e
                                              L
                                S
                                    C
                                ------------------------------------------------- =
                                                     ------------------------------- =
                      ------
                      dt                C               1640        1640
                                                          e
                                                                      e
                         t =  0
                                                 k
        Equating (1.63) with (1.65) and solving for   we get
                                                  2
                                               –  40 + k =  5040
                                                      2
        or
                                               k =  5080                                        (1.66)
                                                2
        and by substitution into (1.62), we obtain the total solution as
                                         vt  =  e    – 8t  5 +  5080t V                         (1.67)

        Check with MATLAB:
        syms t; y0=exp( 8*t)*(5+5080*t); y1=diff(y0)% Compute 1st derivative
        y1 =
        -8*exp(-8*t)*(5+5080*t)+5080*exp(-8*t)
        y2=diff(y0,2)                              % Compute 2nd derivative
        y2 =
        64*exp(-8*t)*(5+5080*t)-81280*exp(-8*t)
        y=y2/640+y1/40+y0/10                       % Verify differential equation, see (1.40)
        y =
        0

        The plot is shown in Figure 1.14 where we have used the following MATLAB code:


        1-22                                                Circuit Analysis II with MATLAB Applications
                                                                                  Orchard Publications
   29   30   31   32   33   34   35   36   37   38   39