Page 36 - Circuit Analysis II with MATLAB Applications
P. 36

Chapter 1  Second Order Circuits


                                                             1
                                                 1
                                         G
                                   D =   ------- =  ----------- =  ------------------------------------- =  6.4
                                     P
                                         2C    2RC     2 u  50 u  1640
                                                                e
        or
                                                   2
                                                  D =  40.96
                                                   P
        and as before,
                                                1
                                                          1
                                          2
                                         Z =   ------- =  ---------------------------- =  64
                                          0
                                               LC    10 u  1 640
                                                           e
                2
        Also, Z !  D 2 P . Therefore, the natural response is underdamped with natural frequency
                0
                                          2
                                              2
                                                       –
                                Z nP  =  Z –  D =   64 40.96 =     23.04 =  4.8
                                              P
                                          0
        Since v =  0 , the total response is just the natural response. Then, from (1.48),
               f
                                         – D t
                          vt  =  v t   =  ke  P  cos    Z t +  M =  ke – 6.4t cos    4.8t +  M    (1.69)

                                                  nP
                                 n
        and the constants  and   will be evaluated from the initial conditions.
                          k
                               M
        From the initial condition v 0   =  v0   =  5V  and (1.69) we get
                                  C
                                                    0
                                           v0   =  ke cos    0 +  M =  5

        or
                                               kcos M =  5                                      (1.70)
                                 k
        To evaluate the constants   and   we differentiate (1.69), we evaluate it at t =  0 , we write the equa-
                                       M
        tion which describes the circuit at t =  0 + , and we equate these two expressions. Using MATLAB we
        get:
        syms t k phi; y0=k*exp( 6.4*t)*cos(4.8*t+phi); y1=diff(y0)
        y1 =
        -32/5*k*exp(-32/5*t)*cos(24/5*t+phi)-24/5*k*exp(-32/5*t)*sin(24/
        5*t+phi)

        pretty(y1)
        - 32/5 k exp(- 32/5 t) cos(24/5 t + phi)
             - 24/5 k exp(- 32/5 t) sin(24/5 t + phi)

        Thus,

                           dv    – 6.4ke – 6.4t cos     4.8t +  M –  4.8ke – 6.4t sin     4.8t +  M    (1.71)
                           ------ =

                            dt
        and


        1-24                                                Circuit Analysis II with MATLAB Applications
                                                                                  Orchard Publications
   31   32   33   34   35   36   37   38   39   40   41