Page 40 - Circuit Analysis II with MATLAB Applications
P. 40

Chapter 1  Second Order Circuits


                                              k
        Now, we need to evaluate the constants   and  .
                                                    M
        With the initial condition v 0   =  5V  (1.76) becomes
                                  C
                                                  0
                                  v0   =  v 0   =  ke cos +  2cos  –    89.72q =  5

                                                      M
                                          C
        or
                                                    M
                                                kcos |  5                                       (1.77)
        To make use of the second initial condition, we differentiate (1.76) using MATLAB as follows, and
        then we evaluate it at t =  0 .

        syms t k phi; y0=k*exp( 6.4*t)*cos(4.8*t+phi)+2*cos(6400*t 1.5688);
        y1=diff(y0);                                                        % Differentiate v(t) of (1.76)
        y1 =
        -32/5*k*exp(-32/5*t)*cos(24/5*t+phi)-24/5*k*exp(-32/5*t)*sin(24/
        5*t+phi)-12800*sin(6400*t-1961/1250)
        or
                 dv    – 6.4ke – 6.4t  cos    4.8t +  M –  4.8ke – 6.4t sin    4.8t +  M –  12800sin     6400t –  1.5688
                 ------ =


                  dt
        and
            dv
                               –
            ------  =  – 6.4kcos M 4.8ksin M 12800sin  –    1.5688 =  – 6.4kcos M 4.8ksin +  12800  (1.78)
                                          –
                                                                           –

                                                                                   M
            dt
               t =  0
        With (1.77) we get
                           dv    =  –  32 4.8ksin +  12800 |  –  4.8ksin +  12832               (1.79)
                           ------
                                        –
                                                                    M
                                                M
                           dt
                              t =  0
                     dv
                           dv
        Also, i =  C------  or ------ =  i ---- C   and
               C
                     dt
                                 C
                           dt
                                    dv        i 0      +  i 0   +    i 0     –  +  i 0     –  +
                                               C
                                                                      L
                                                        S
                                                              R
                                    ------  =  --------------- =  -----------------------------------------------------
                                    dt    +     C               C
                                       t =  0
        or
                                     +
                        dv     =  i 0      –  v 0   R –  i 0    20 5 50 –  2  11456             (1.80)
                                               e
                                                              –
                                                                e
                                          C
                                   S
                                                    L
                                  ----------------------------------------------------------- =
                                                           ------------------------------- =
                        ------
                         dt                 C                 1640
                                                                e
                            t =  0
                                                 k
        Equating (1.79) with (1.80) and solving for   we get
                                          –  4.8ksin + 12832 =  11456
                                                  M
        1-28                                                Circuit Analysis II with MATLAB Applications
                                                                                  Orchard Publications
   35   36   37   38   39   40   41   42   43   44   45