Page 90 - Circuit Analysis II with MATLAB Applications
P. 90

Chapter 2  Resonance

         2.12 Solutions to Exercises

                                                                          L
         1. At series resonance Z =  R =  100  and thus R =  100 : . We find   from Q 0S  =  Z LR  where
                                                                                            e
                               0
                                                                                          0
           Z =   2Sf  . Also,
             0      0
                                           Z       Z        2S u  10 6
                                            0
                                                     0
                                  Q 0S  =  ------------------ =  --------- =  --------------------------------- =  50
                                         Z –
                                          2  Z 1   BW     2S u  20 u  10 3
           Then,
                                          RQ        100 u  50
                                            ˜
                                               0S
                                     L =  ----------------- =  --------------------- =  0.796 mH
                                            Z              6
                                              0     2S u 10
                      2
           and from Z =   1LC
                            e
                      0
                                      1                1
                                C =  --------- =  -------------------------------------------------------------- =  31.8 pF
                                      2
                                     Z L       2S u  10    6 2  u  7.96 u  10 – 4
                                      0
           Check with MATLAB:
           f0=10^6; w0=2*pi*f0; Z0=100; BW=2*pi*20000; w1=w0-BW/2; w2=w0+BW/2;...
           R=Z0; Qos=w0/BW; L=R*Qos/w0; C=1/(w0^2*L); fprintf(' \n');...
           fprintf('R = %5.2f Ohms \t', R); fprintf('L = %5.2e H \t', L);...
           fprintf('C = %5.2e F \t', C); fprintf(' \n'); fprintf(' \n');
           R = 100.00 Ohms   L = 7.96e-004 H    C = 3.18e-011 F
         2.

                                                   Z 1


                                           Z IN          Z 2      Z 3




                                              Z IN  =  Z +  Z __  Z 3
                                                      1
                                                          2
           where
                                                    j3
                                                 4 –
                                        3 +



                                            j4 ˜
                                                          ------------------------------------------- ----------
                              Z __  Z =     ------------------------------------------ =  12 –  j9 + j16 +  12 7 –  j j
                                                                           ˜
                               2
                                   3
                                                                            7 –
                                                                    j
                                                                7 +
                                                  –
                                         3 +
                                            j4 +
                                                4 j3
                                       168 +  j49 –  j24 +  7  175 +  j25
                                     =  ---------------------------------------------- =  ----------------------- =  3.5 +  j0.5
                                              2
                                             7 +  1 2         50
           We let Z IN  =  R IN +  jX IN  and Z =  R +  jX 1 . For resonance we must have
                                             1
                                        1
                    Z IN  =  R IN  +  jX IN  =  R +  jX +  3.5 +  j0.5 =  R IN  +  0 =  R +  jX +  3.5 +  j0.5
                                                                              1
                                         1
                                              1
                                                                         1
        2-24                                                Circuit Analysis II with MATLAB Applications
                                                                                  Orchard Publications
   85   86   87   88   89   90   91   92   93   94   95