Page 94 - Circuit Analysis II with MATLAB Applications
P. 94

Chapter 2  Resonance


                                 1
                                                         100
                                                 1
                                                                        8
                                                                   9
                            2
                                      --------- =
                           Z =   ------- –  100  --------------------------- –  ---------- =  10 –  10 =  9 u  10 8
                            0    LC   L 2    10 – 3  u  10 – 6  10 – 6
             and thus
                                                      8
                                         Z =    9 u  10 =  30 000 r s

                                                                   e
                                          0
           b.
                                     BW =  Z e  Q =  30 000 50 =  600 r s
                                                           e

                                                                       e
                                             0
           c.
                                                           –
                                Z =   Z –  BW 2 =  30 000 300 =    29 700 r s
                                                                            e

                                              e

                                       0
                                 1
                                Z =   Z +  BW 2 =  30 000 +  300 =  30 300 r s
                                              e


                                                                            e
                                       0
                                 2
                                                                                      6
                                          4
           d. At resonance,  jZ L =  j3 u  10 u  10 – 3  =  j30 :   and  1jZ Ce  =  – j10 – 4  u  10 e  3 =  – j100  . 3 e
                              0                                      0
             The phasor equivalent circuit is shown below.
                                                    V
                                                      C0
                                                              `
                                              1 :        j30 :
                                       V S
                                                            10 :
                                                      – j100 3 :
                                                            e
                                          170 0q V
                                              ‘
             We let z =  1 : , z =  – j100 3 : , and z =  10 +  j30 : . Using nodal analysis we get:
                                         e
                    1
                               2
                                                    3
                                           V   –  V  V     V
                                            C0
                                                             C0
                                                  S
                                                       C0
                                           ---------------------- +  --------- +  --------- =  0
                                              z 1     z 2   z 3
                                                 1
                                             1
                                           §  ---- +  ---- +  ---- V  =  V S
                                                      1 ·
                                                                ------
                                           ©  z 1  z 2  z 3  ¹  C0  z 1
             We wil use MATLAB to obtain the value of V C0 .
             Vs=170; z1=1; z2= j*100/3; z3=10+j*30; Z=1/z1+1/z2+1/z3; Vc0=Vs/Z;...
             fprintf(' \n'); fprintf('Vc0 = %6.2f', abs(Vc0)); fprintf(' \n'); fprintf(' \n')
             Vc0 = 168.32
         6. First, we will find the appropriate value of C 2  . We recall that at parallel resonance the voltage is
           maximum and the current is minimum. For this circuit the parallel resonance was found as in
           (2.37), that is,
        2-28                                                Circuit Analysis II with MATLAB Applications
                                                                                  Orchard Publications
   89   90   91   92   93   94   95   96   97   98   99