Page 268 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 268

SYSTEM IDENTIFICATION                                        257


                                                                 1
                    input flow  q 0                          ∆h = h – h 2
                                    h 1               h 2
                          z 1             z 2
                                         q 1              q 2

                              tank 1          tank 2       drain

            Figure 8.2  A simple hydraulic system consisting of two connected tanks


                For the model of the flow through the pipelines we consider three
              possibilities, each leading to a different structure of the model.

              Candidate model I: Frictionless liquids; Torricelli’s law
              For a frictionless liquid, Torricelli’s law states that when a tank leaks,
                                                                     2
                                                              2
              the sum of potential and kinetic energy is constant: q ¼ 2A gh. A is
              the area of the hole. Application of this law gives rise to the following
              second order, nonlinear model (g is the gravitational constant):

                          _      1  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  1
                                       2
                          h h 1 ¼   2A gðh 1   h 2 Þ þ  q 0
                                       1
                                C                   C
                                                                        ð8:3Þ
                                                      q
                                    ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                  q
                                                        ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                          _      1     2            1     2
                          h h 2 ¼þ  2A gðh 1   h 2 Þ    2A gh 2
                                       1
                                                          2
                                C                   C
              Candidate model II: Linear friction
              Here, we assume that the difference of pressure on both sides of a
              pipeline holds a linear relation with the flow:  p ¼ Rq. The para-
              meter R is the resistance. Since  p ¼  g h (  is the mass density), the
              assumption brings the following linear, second order model:
                               _      g            1
                               h h 1 ¼  ðh 2   h 1 Þþ  q 0
                                    R 1 C          C                    ð8:4Þ
                               _      g              g
                               h h 2 ¼  ðh 1   h 2 Þþ  h 2
                                    R 1 C          R 2 C

              Candidate model III: Linear friction and hydraulic inertness
              A liquid within a pipeline with a length ‘ and cross-section A experi-
              ences a force ‘ _ q (second law of Newton: F ¼ ma). This force is
                             q
              induced by the difference of pressure F ¼ A p ¼ A g h. Thus,
   263   264   265   266   267   268   269   270   271   272   273