Page 318 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 318

EXERCISES                                                    307

            8.7 EXERCISES


            1. The observed sequence of data shown in Figure 8.17 is available in the data file
              C8exercise1:mat.Use MATLAB to determine the smallest order of an autoregressive
              modelthatis stillabletodescribethedatawell.Determinetheparameters ofthatmodel.(*).
            2. Given the system:

                              "                  #
                               0:32857   0:085714
                                                       ½
                           F ¼                     H ¼ 10 5 Š
                                1:1429   1:0714
              Determine the observability Grammian and the observability matrix. What are the
              eigenvalues of these matrices? What can be said about the observability? (0)
            3. Given the system x(i þ 1) ¼ Fx(i) þ Gw(i) and z(i) ¼ Hx(i) þ v(i) with

                            "             #
                               0:65   0:06        2
                         F ¼                 G ¼      H ¼ 1   1 Š
                                                          ½
                               0:375  0:65        5
              w(i) and v(i) are white noise sequences with unit variances. Examine the observability
              and the controllability of this system. Does the steady state Kalman filter exist? If so,
              determine the Kalman gain, the innovation matrix, the prediction covariance matrix
              and the error covariance matrix. (*)
            4. Repeat exercise 3, but this time with:

                                    "             #
                                       0:85   0:14
                                 F ¼                 ð*Þ
                                      0:875   0:85
            5. Repeat exercise 3, but now with:

                                     "            #
                                       0:75    0:1
                                 F ¼                 ð*Þ
                                       0:625  0:75

             10  x(i)

              5

              0
             –5

            –10
               0     10    20   30    40    50    60    70    80    90   100
                                                                       i
            Figure 8.17  Observed random sequence in exercise 1
   313   314   315   316   317   318   319   320   321   322   323