Page 46 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 46

DETECTION: THE TWO-CLASS CASE                                 35

                             1


                            0.8
                           measure of eccentricity  0.6





                            0.4


                            0.2


                             0
                              0     0.2    0.4   0.6   0.8    1
                                  measure of 6–fold rotational symmetry
            Figure 2.11  Bayes classification with the reject option included

            Listing 2.5
            PRTools code for minimum risk classification including a reject option

            load nutsbolts;
            cost ¼ [  0.20   0.07     0.07    0.07 ; . . .
                     0.07    0.15     0.07    0.07 ; . . .
                     0.07    0.07    0.05     0.07 ; . . .
                     0.03    0.03     0.03    0.03 ; . . .
                    0.16     0.11     0.01    0.07 ];
            clabels ¼ str2mat(getlablist(z),‘reject’);
            w1 ¼ qdc(z);       % Estimate a single Gaussian per class
            scatterd(z);
                               % Change output according to cost
            w2 ¼ w1*classc*costm([],cost’,clabels);
            plotc(w1);         % Plot without using cost
            plotc(w2);         % Plot using cost


            2.3   DETECTION: THE TWO-CLASS CASE

            The detection problem is a classification problem with two possible
            classes: K ¼ 2. In this special case, the Bayes decision rule can be
            moulded into a simple form. Assuming a uniform cost function the
            MAP classifier, expressed in (2.12), reduces to the following test:

                               pðzj! 1 ÞPð! 1 Þ > pðzj! 2 ÞPð! 2 Þ     ð2:34Þ
   41   42   43   44   45   46   47   48   49   50   51