Page 100 - Computational Retinal Image Analysis
P. 100
92 CHAPTER 5 Automatic landmark detection in fundus photography
References
[1] H. Quigley, A. Brown, J. Morrison, S. Drance, The size and shape of the optic disc in
normal human eyes, Arch. Ophthalmol. 108 (1) (1990) 51–57.
[2] M. Yanoff, J. Sassani, Ocular Pathology, Mosby/Elsevier, Edinburgh, 2009.
[3] Y. Tolias, S.M. Panas, A fuzzy vessel tracking algorithm for retinal images based on
fuzzy clustering, IEEE Trans. Med. Imaging 17 (1998) 263–273. ieeexplore.ieee.org.
[4] G. Joshi, J. Sivaswamy, S.R. Krishnadas, Optic disk and cup segmentation from monocu-
lar color retinal images for glaucoma assessment, IEEE Trans. Med. Imaging 30 (2011)
1192–1205. ieeexplore.ieee.org.
[5] K. Goatman, A. Fleming, S. Philip, G.J. Williams, J.A. Olson, P.F. Sharp, Detection of
new vessels on the optic disc using retinal photographs, IEEE Trans. Med. Imaging 30
(2011) 972–979. ieeexplore.ieee.org.
[6] S. Echegaray, G. Zamora, H. Yu, W. Luo, P. Soliz, R. Kardon, Automated analysis of
optic nerve images for detection and staging of papilledema, Investig. Ophthalmol. Vis.
Sci. 52 (10) (2011) 7470–7478.
[7] H.F. Jelinek, M.J. Cree (Eds.), Automated Detection of Retinal Pathology, CRC Press,
Boca Raton, FL, 2009.
[8] L. Hubbard, R. Brothers, W. King, L. Clegg, R. Klein, Methods for evaluation of retinal
microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis
Risk in Communities Study, Ophthalmology (1999) 2269–2280.
[9] J.J. Staal, M.D. Abramoff, M. Niemeijer, M. a Viergever, B. Van Ginneken, Ridge based
vessel segmentation in color images of the retina, IEEE Trans. Med. Imaging 23 (4)
(2005) 501–509.
[10] E. Decencière, et al., Feedback on a publicly distributed image database: the Messidor
database, Image Anal. Stereol. 33 (3) (2014) 231–234.
[11] A. Hoover, M. Goldbaum, Locating the optic nerve in a retinal image using the fuzzy
convergence of the blood vessels, IEEE Trans. Med. Imaging 22 (8) (2003) 951–958.
[12] E. Carmona, M. Rincón, J. García-Feijoó, J.M. Martínez-de-la-Casa, Identification of
the optic nerve head with genetic algorithms, Artif. Intell. Med. 43 (3) (2008) 243–259.
Elsevier.
[13] T. Kauppi, V. Kalesnykiene, J.-K. Kamarainen, et al., DIARETDB0: Evaluation Database
and Methodology for Diabetic Retinopathy Algorithms, www.it.lut.fi, 2006.
[14] T. Kauppi, et al., DIARETDB1 diabetic retinopathy database and evaluation protocol,
in: Medical Image Understanding and Analysis 2007 University of Wales Aberystwyth,
17–18th July, 2007, p. 61.
[15] E. Decencière, G. Cazuguel, X. Zhang, G. Thibault, et al., TeleOphta: machine learn-
ing and image processing methods for teleophthalmology, IRBM 34 (2013) 196–203.
Elsevier.
[16] Kaggle n.d. Diabetic Retinopathy Detection Competition.
[17] B. Harangi, A. Hajdu, Detection of the optic disc in fundus images by combining prob-
ability models, Comput. Biol. Med. 65 (2015) 10–24. Elsevier.
[18] A.A.H.A.R. Youssif, A.Z. Ghalwash, A.A.S.A.R. Ghoneim, Optic disc detection from
normalized digital fundus images by means of a vessels’ direction matched filter, IEEE
Trans. Med. Imaging 27 (1) (2008) 11–18.
[19] M. Haleem, L. Han, J. van Hemert, B. Li, Automatic extraction of retinal features from
colour retinal images for glaucoma diagnosis: a review, Comput. Med. Imaging Graph.
37 (7–8) (2013) 581–596.