Page 120 - Computational Retinal Image Analysis
P. 120

References  113




                    [15]  M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. Rudnicka, C. Owen, S. Barman,
                       Blood vessel segmentation methodologies in retinal images—a survey, Comput.
                       Methods Programs Biomed. 108 (1) (2012) 407–433.
                    [16]  J.  Almotiri, K.  Elleithy,  A.  Elleithy, Retinal vessels segmentation techniques and
                       algorithms: a survey, Appl. Sci. 8 (2) (2018) 1–31.
                    [17]  M. Miri, Z. Amini, H. Rabbani, R. Kafieh, A comprehensive study of retinal vessel
                       classification methods in fundus images, J. Med. Signals Sens. 7 (2) (2017) 59–70.
                    [18]  O. Faust, U. Acharya, E. Ng, K. Ng, J. Suri, Algorithms for the automated detection of
                       diabetic retinopathy using digital fundus images: a review, J. Med. Syst. 36 (1) (2012)
                       145–157.
                    [19]  M. Mookiah, U. Acharya, C. Chua, C. Lim, E. Ng, A. Laude, Computer-aided diagnosis
                       of diabetic retinopathy: a review, Comput. Biol. Med. 43 (12) (2013) 2136–2155.
                    [20]  Y. Douven, Retina Tracking for Robot-Assisted Vitreoretinal Surgery (Master’s thesis),
                       Eindhoven University of Technology, 2015.
                    [21]  D. Braun, S. Yang, J. Martel, C. Riviere, B. Becker, EyeSLAM: real-time simultaneous
                       localization and mapping of retinal vessels during intraocular microsurgery, Int. J. Med.
                       Robot. 14 (1) (2018) 1–10.
                    [22]  S. Lajevardi, A. Arakala, S. Davis, K. Horadam, Retina verification system based on
                       biometric graph matching, IEEE Trans. Image Process. 22 (9) (2013) 3625–3635.
                    [23]  Z. Waheed, U. Akram, A. Waheed, M. Khan, A. Shaukat, Person identification using
                       vascular and non-vascular retinal features, Comput. Electr. Eng. 53 (2016) 359–371.
                    [24]  J.  Staal, M.  Abramoff, M.  Niemeijer, M.  Viergever, B.  van Ginneken, Ridge-based
                       vessel segmentation in color images of the retina, IEEE Trans. Med. Imaging 23 (4)
                       (2004) 501–509.
                    [25]  A. Hoover, V. Kouznetsova, M. Goldbaum, Locating blood vessels in retinal images by
                       piecewise threshold probing of a matched filter response, IEEE Trans. Med. Imaging 19
                       (3) (2000) 203–210.
                    [26]  Q. Hu, M. Abramoff, M. Garvin, Automated separation of binary overlapping trees in
                       low-contrast color retinal images, in: MICCAI, 2013.
                    [27]  B. Dashtbozorg, A. Mendonca, A. Campilho, An automatic graph-based approach for
                       artery/vein classification in retinal images, IEEE Trans. Image Process. 23 (3) (2014)
                       1073–1083.
                    [28]  G. Azzopardi, N. Petkov, Automatic detection of vascular bifurcations in segmented
                       retinal images using trainable COSFIRE filters, Pattern Recogn. Lett. 34 (8) (2013)
                       922–933.
                    [29]  T. Kohler, A. Budai, M. Kraus, J. Odstrcilik, G. Michelson, J. Hornegger, Automatic
                       no-reference quality assessment for retinal fundus images using vessel segmentation,
                       in: IEEE Int. Symp. on Computer-Based Medical Systems, 2013, pp. 95–100.
                    [30]  M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. Rudnicka, C. Owen, S. Barman,
                       An ensemble classification-based approach applied to retinal blood vessel segmentation,
                       IEEE Trans. Biomed. Eng. 59 (9) (2012) 2538–2548.
                    [31]  D.  Farnell, F.  Hatfield, P.  Knox, M.  Reakes, S.  Spencer, D.  Parry, S.  Harding,
                       Enhancement of blood vessels in digital fundus photographs via the application of
                       multiscale line operators, J. Frankl. Inst. 345 (7) (2008) 748–765.
                    [32]  S. Holm, G. Russell, V. Nourrit, N. McLoughlin, DR HAGIS—a novel fundus image
                       database for the automatic extraction of retinal surface vessels, SPIE J. Med. Imaging 4
                       (1) (2017) 1–11.
   115   116   117   118   119   120   121   122   123   124   125