Page 121 - Computational Retinal Image Analysis
P. 121
114 CHAPTER 6 Retinal vascular analysis: Segmentation, tracing, and beyond
[33] M. Niemeijer, X. Xu, A. Dumitrescu, P. Gupta, B. Ginneken, J. Folk, M. Abramoff,
Automated measurement of the arteriolar-to-venular width ratio in digital color fundus
photographs, IEEE Trans. Med. Imaging 30 (11) (2011) 1941–1950.
[34] E. Grisan, M. Foracchia, A. Ruggeri, A novel method for the automatic grading of
retinal vessel tortuosity, IEEE Trans. Med. Imaging 27 (3) (2008) 310–319.
[35] J. Zhang, B. Dashtbozorg, E. Bekkers, J. Pluim, R. Duits, B. Romeny, Robust retinal
vessel segmentation via locally adaptive derivative frames in orientation scores, IEEE
Trans. Med. Imaging 35 (12) (2016) 2631–2644.
[36] R. Estrada, M. Allingham, P. Mettu, S. Cousins, C. Tomasi, S. Farsiu, Retinal artery-
vein classification via topology estimation, IEEE Trans. Med. Imaging 34 (12) (2015)
2518–2534.
[37] A. Perez-Rovira, R. Cabido, E. Trucco, S. McKenna, J. Hubschman, RERBEE:
robust efficient registration via bifurcations and elongated elements applied to retinal
fluorescein angiogram sequences, IEEE Trans. Med. Imaging 30 (1) (2012) 140–150.
[38] I. Styles, A. Calcagni, E. Claridge, F. Espina, J. Gibson, Quantitative analysis of multi-
spectral fundus images, Med. Image Anal. 10 (4) (2016) 578–597.
[39] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. Berg, L. Fei-Fei, ImageNet large scale visual recognition
challenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252.
[40] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, C.L. Zitnick,
Microsoft COCO: common objects in context, in: European Conf. Computer Vision
(ECCV), 2014.
[41] X. Jiang, M. Lambers, H. Bunke, Structural performance evaluation of curvilinear
structure detection algorithms with application to retinal vessel segmentation, Pattern
Recogn. Lett. 33 (2012) 2048–2056.
[42] M. Gegundez-Arias, A. Aquino, J. Bravo, D. Marin, A function for quality evaluation of
retinal vessel segmentations, IEEE Trans. Med. Imaging 31 (2) (2012) 231–239.
[43] Z. Yan, X. Yang, K. Cheng, A skeletal similarity metric for quality evaluation of retinal
vessel segmentation, IEEE Trans. Med. Imaging 37 (4) (2018) 1045–1057.
[44] E. Trucco, A. Ruggeri, T. Karnowski, L. Giancardo, E. Chaum, J. Hubschman, B. Al-Diri,
C. Cheung, D. Wong, M. Abramoff, G. Lim, D. Kumar, P. Burlina, N. Bressler,
H. Jelinek, F. Meriaudeau, G. Quellec, T. MacGillivray, B. Dhillon, Validating retinal
fundus image analysis algorithms: issues and a proposal, Invest. Ophthalmol. Vis. Sci.
54 (2013) 3546–3559.
[45] A. Galdran, P. Costa, A. Bria, T. Araujo, A. Mendonca, A. Campilho, A no-reference
quality metric for retinal vessel tree segmentation, in: MICCAI, 2008.
[46] L. Tramontan, E. Poletti, D. Fiorin, A. Ruggeri, A web-based system for the quantitative
and reproducible assessment of clinical indexes from the retinal vasculature, IEEE
Trans. Biomed. Eng. 58 (3) (2011) 818–821.
[47] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, M. Goldbaum, Detection of blood
vessels in retinal images using two-dimensional matched filters, IEEE Trans. Med.
Imaging 8 (3) (1989) 263–269.
[48] A. Pinz, S. Bernogger, P. Datlinger, A. Kruger, Mapping the human retina, IEEE Trans.
Med. Imaging 17 (4) (1998) 606–619.
[49] L. Gang, O. Chutatape, S. Krishnan, Detection and measurement of retinal vessels in
fundus images using amplitude modified second-order Gaussian filter, IEEE Trans.
Med. Imaging 49 (2) (2002) 168–172.