Page 121 - Computational Retinal Image Analysis
P. 121

114    CHAPTER 6  Retinal vascular analysis: Segmentation, tracing, and beyond




                           [33]  M. Niemeijer, X. Xu, A. Dumitrescu, P. Gupta, B. Ginneken, J. Folk, M. Abramoff,
                              Automated measurement of the arteriolar-to-venular width ratio in digital color fundus
                              photographs, IEEE Trans. Med. Imaging 30 (11) (2011) 1941–1950.
                           [34]  E. Grisan, M. Foracchia, A. Ruggeri, A novel method for the automatic grading of
                              retinal vessel tortuosity, IEEE Trans. Med. Imaging 27 (3) (2008) 310–319.
                           [35]  J. Zhang, B. Dashtbozorg, E. Bekkers, J. Pluim, R. Duits, B. Romeny, Robust retinal
                              vessel segmentation via locally adaptive derivative frames in orientation scores, IEEE
                              Trans. Med. Imaging 35 (12) (2016) 2631–2644.
                           [36]  R. Estrada, M. Allingham, P. Mettu, S. Cousins, C. Tomasi, S. Farsiu, Retinal artery-
                              vein classification via topology estimation, IEEE Trans. Med. Imaging 34 (12) (2015)
                              2518–2534.
                           [37]  A.  Perez-Rovira, R.  Cabido, E.  Trucco, S.  McKenna, J.  Hubschman, RERBEE:
                              robust efficient registration via bifurcations and elongated elements applied to retinal
                              fluorescein angiogram sequences, IEEE Trans. Med. Imaging 30 (1) (2012) 140–150.
                           [38]  I. Styles, A. Calcagni, E. Claridge, F. Espina, J. Gibson, Quantitative analysis of multi-
                              spectral fundus images, Med. Image Anal. 10 (4) (2016) 578–597.
                           [39]  O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
                              A. Khosla, M. Bernstein, A. Berg, L. Fei-Fei, ImageNet large scale visual recognition
                              challenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252.
                           [40]  T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, C.L. Zitnick,
                              Microsoft COCO: common objects in context, in: European Conf. Computer Vision
                              (ECCV), 2014.
                           [41]  X.  Jiang,  M.  Lambers,  H.  Bunke,  Structural  performance  evaluation  of  curvilinear
                              structure detection algorithms with application to retinal vessel segmentation, Pattern
                              Recogn. Lett. 33 (2012) 2048–2056.
                           [42]  M. Gegundez-Arias, A. Aquino, J. Bravo, D. Marin, A function for quality evaluation of
                              retinal vessel segmentations, IEEE Trans. Med. Imaging 31 (2) (2012) 231–239.
                           [43]  Z. Yan, X. Yang, K. Cheng, A skeletal similarity metric for quality evaluation of retinal
                              vessel segmentation, IEEE Trans. Med. Imaging 37 (4) (2018) 1045–1057.
                           [44]  E. Trucco, A. Ruggeri, T. Karnowski, L. Giancardo, E. Chaum, J. Hubschman, B. Al-Diri,
                              C.  Cheung,  D.  Wong,  M.  Abramoff,  G.  Lim,  D.  Kumar,  P.  Burlina,  N.  Bressler,
                              H. Jelinek, F. Meriaudeau, G. Quellec, T. MacGillivray, B. Dhillon, Validating retinal
                              fundus image analysis algorithms: issues and a proposal, Invest. Ophthalmol. Vis. Sci.
                              54 (2013) 3546–3559.
                           [45]  A. Galdran, P. Costa, A. Bria, T. Araujo, A. Mendonca, A. Campilho, A no-reference
                              quality metric for retinal vessel tree segmentation, in: MICCAI, 2008.
                           [46]  L. Tramontan, E. Poletti, D. Fiorin, A. Ruggeri, A web-based system for the quantitative
                              and reproducible assessment of clinical indexes from the retinal vasculature, IEEE
                              Trans. Biomed. Eng. 58 (3) (2011) 818–821.
                           [47]  S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, M. Goldbaum, Detection of blood
                              vessels in retinal images using two-dimensional matched filters, IEEE Trans. Med.
                              Imaging 8 (3) (1989) 263–269.
                           [48]  A. Pinz, S. Bernogger, P. Datlinger, A. Kruger, Mapping the human retina, IEEE Trans.
                              Med. Imaging 17 (4) (1998) 606–619.
                           [49]  L. Gang, O. Chutatape, S. Krishnan, Detection and measurement of retinal vessels in
                              fundus images using amplitude modified second-order Gaussian filter, IEEE Trans.
                              Med. Imaging 49 (2) (2002) 168–172.
   116   117   118   119   120   121   122   123   124   125   126