Page 122 - Computational Retinal Image Analysis
P. 122
References 115
[50] V. Mahadevan, H. Narasimha-Iyer, B. Roysam, H. Tanenbaum, Robust model-based
vasculature detection in noisy biomedical images, IEEE Trans. Inf. Technol. Biomed. 8
(3) (2004) 360–376.
[51] M. Sofka, C. Stewart, Retinal vessel centerline extraction using multiscale matched
filters, confidence and edge measures, IEEE Trans. Med. Imaging 25 (12) (2006)
1531–1546.
[52] K. Tobin, E. Chaum, P. Govindasamy, T. Karnowski, Detection of anatomic structures
in human retinal imagery, IEEE Trans. Med. Imaging 26 (12) (2007) 1729–1739.
[53] A. Mendonca, A. Campilho, Segmentation of retinal blood vessels by combining the
detection of centerlines and morphological reconstruction, IEEE Trans. Med. Imaging
25 (9) (2006) 1200–1213.
[54] M. Miri, A. Mahloojifar, Retinal image analysis using curvelet transform and
multistructure elements morphology by reconstruction, IEEE Trans. Biomed. Eng. 58
(5) (2011) 1183–1192.
[55] M. Martinez-Perez, A. Hughes, S. Thom, A. Bharath, K. Parker, Segmentation of blood
vessels from red-free and fluorescein retinal images, Med. Image Anal. 11 (2007)
47–61.
[56] L. Wang, A. Bhalerao, R. Wilson, Analysis of retinal vasculature using a multiresolution
Hermite model, IEEE. Trans. Med. Imaging 26 (2) (2007) 137–152.
[57] P. Bankhead, C. Scholfield, J. McGeown, T. Curtis, Fast retinal vessel detection and
measurement using wavelets and edge location refinement, PLoS ONE 7 (3) (2012)
e32435.
[58] S. Roychowdhury, D. Koozekanani, K. Parhi, Iterative vessel segmentation of fundus
images, IEEE Trans. Biomed. Eng. 62 (7) (2015) 1738–1749.
[59] Y. Xu, T. Geraud, L. Najman, Connected filtering on tree-based shape-spaces, IEEE
Trans. Pattern Anal. Mach. Intell. 38 (6) (2016) 1126–1140.
[60] G. Kovacs, A. Hajdu, A self-calibrating approach for the segmentation of retinal vessels
by template matching and contour reconstruction, Med. Image Anal. 29 (2016) 24–46.
[61] L. Espona, M. Carreira, M. Penedo, M. Ortega, Retinal vessel tree segmentation using
a deformable contour model, in: ICPR, 2008.
[62] B. Al-Diri, A. Hunter, D. Steel, An active contour model for segmenting and measuring
retinal vessels, IEEE Trans. Med. Imaging 28 (9) (2009) 1488–1497.
[63] B. Lam, H. Yan, A novel vessel segmentation algorithm for pathological retina images
based on the divergence of vector fields, IEEE Trans. Med. Imaging 27 (2) (2008)
237–246.
[64] B. Lam, Y. Gao, A. Liew, General retinal vessel segmentation using regularization-
based multiconcavity modeling, IEEE Trans. Med. Imaging 29 (7) (2010) 1369–1381.
[65] K. Sun, Z. Chen, S. Jiang, Local morphology fitting active contour for automatic
vascular segmentation, IEEE Trans. Biomed. Eng. 59 (2) (2012) 464–473.
[66] Y. Zhao, X. Wang, X. Wang, F. Shih, Retinal vessels segmentation based on level set
and region growing, Pattern Recogn. 47 (7) (2014) 2437–2446.
[67] Y. Zhao, L. Rada, K. Chen, S. Harding, Y. Zheng, Automated vessel segmentation using
infinite perimeter active contour model with hybrid region information with application
to retinal images, IEEE Trans. Med. Imaging 34 (9) (2015) 1797–1807.
[68] D. Chen, J. Zhang, L. Cohen, Minimal paths for tubular structure segmentation with
coherence penalty and adaptive anisotropy, IEEE Trans. Image Process. 28 (2019)
1271–1284.