Page 122 - Computational Retinal Image Analysis
P. 122

References  115




                    [50]  V. Mahadevan, H. Narasimha-Iyer, B. Roysam, H. Tanenbaum, Robust model-based
                       vasculature detection in noisy biomedical images, IEEE Trans. Inf. Technol. Biomed. 8
                       (3) (2004) 360–376.
                    [51]  M. Sofka, C. Stewart, Retinal vessel centerline extraction using multiscale matched
                       filters, confidence and edge measures, IEEE  Trans. Med. Imaging 25 (12) (2006)
                       1531–1546.
                    [52]  K. Tobin, E. Chaum, P. Govindasamy, T. Karnowski, Detection of anatomic structures
                       in human retinal imagery, IEEE Trans. Med. Imaging 26 (12) (2007) 1729–1739.
                    [53]  A. Mendonca, A. Campilho, Segmentation of retinal blood vessels by combining the
                       detection of centerlines and morphological reconstruction, IEEE Trans. Med. Imaging
                       25 (9) (2006) 1200–1213.
                    [54]  M.  Miri,  A.  Mahloojifar, Retinal image analysis  using curvelet transform and
                       multistructure elements morphology by reconstruction, IEEE Trans. Biomed. Eng. 58
                       (5) (2011) 1183–1192.
                    [55]  M. Martinez-Perez, A. Hughes, S. Thom, A. Bharath, K. Parker, Segmentation of blood
                       vessels from red-free and fluorescein retinal images, Med. Image Anal. 11 (2007)
                       47–61.
                    [56]  L. Wang, A. Bhalerao, R. Wilson, Analysis of retinal vasculature using a multiresolution
                       Hermite model, IEEE. Trans. Med. Imaging 26 (2) (2007) 137–152.
                    [57]  P. Bankhead, C. Scholfield, J. McGeown, T. Curtis, Fast retinal vessel detection and
                       measurement using wavelets and edge location refinement, PLoS ONE 7 (3) (2012)
                       e32435.
                    [58]  S. Roychowdhury, D. Koozekanani, K. Parhi, Iterative vessel segmentation of fundus
                       images, IEEE Trans. Biomed. Eng. 62 (7) (2015) 1738–1749.
                    [59]  Y. Xu, T. Geraud, L. Najman, Connected filtering on tree-based shape-spaces, IEEE
                       Trans. Pattern Anal. Mach. Intell. 38 (6) (2016) 1126–1140.
                    [60]  G. Kovacs, A. Hajdu, A self-calibrating approach for the segmentation of retinal vessels
                       by template matching and contour reconstruction, Med. Image Anal. 29 (2016) 24–46.
                    [61]  L. Espona, M. Carreira, M. Penedo, M. Ortega, Retinal vessel tree segmentation using
                       a deformable contour model, in: ICPR, 2008.
                    [62]  B. Al-Diri, A. Hunter, D. Steel, An active contour model for segmenting and measuring
                       retinal vessels, IEEE Trans. Med. Imaging 28 (9) (2009) 1488–1497.
                    [63]  B. Lam, H. Yan, A novel vessel segmentation algorithm for pathological retina images
                       based on the divergence of vector fields, IEEE Trans. Med. Imaging 27 (2) (2008)
                       237–246.
                    [64]  B. Lam, Y. Gao, A. Liew, General retinal vessel segmentation using regularization-
                       based multiconcavity modeling, IEEE Trans. Med. Imaging 29 (7) (2010) 1369–1381.
                    [65]  K.  Sun, Z.  Chen, S.  Jiang, Local morphology fitting active contour for automatic
                       vascular segmentation, IEEE Trans. Biomed. Eng. 59 (2) (2012) 464–473.
                    [66]  Y. Zhao, X. Wang, X. Wang, F. Shih, Retinal vessels segmentation based on level set
                       and region growing, Pattern Recogn. 47 (7) (2014) 2437–2446.
                    [67]  Y. Zhao, L. Rada, K. Chen, S. Harding, Y. Zheng, Automated vessel segmentation using
                       infinite perimeter active contour model with hybrid region information with application
                       to retinal images, IEEE Trans. Med. Imaging 34 (9) (2015) 1797–1807.
                    [68]  D. Chen, J. Zhang, L. Cohen, Minimal paths for tubular structure segmentation with
                       coherence penalty and adaptive anisotropy, IEEE  Trans. Image Process. 28 (2019)
                       1271–1284.
   117   118   119   120   121   122   123   124   125   126   127