Page 124 - Computational Retinal Image Analysis
P. 124
References 117
[89] H. Fu, Y. Xu, S. Lin, D. Wong, J. Liu, DeepVessel: retinal vessel segmentation via deep
learning and conditional random field, in: MICCAI, 2016.
[90] Z. Yan, X. Yang, K. Cheng, Joint segment-level and pixel-wise losses for deep learning
based retinal vessel segmentation, IEEE Trans. Biomed. Eng. 65 (9) (2018) 1912–1923.
[91] K. Maninis, J. Pont-Tuset, P. Arbelaez, L. Gool, Deep retinal image understanding, in:
MICCAI, 2016.
[92] H. Zhao, H. Li, S. Maurer-Stroh, L. Cheng, Synthesizing retinal and neuronal images
with generative adversarial nets, Med. Image Anal. 49 (2018) 14–26.
[93] H. Zhao, H. Li, S. Maurer-Stroh, Y. Guo, Q. Deng, L. Cheng, Supervised segmentation
of un-annotated retinal fundus images by synthesis, IEEE Trans. Med. Imaging 38 (1)
(2018) 46–56.
[94] R. Frangi, W. Niessen, K. Vincken, M. Viergever, Multiscale vessel enhancement
filtering, in: Medical Image Computing and Computer-Assisted Interventation
(MICCAI), 1998, pp. 130–137.
[95] F. Zana, J. Klein, Segmentation of vessel-like patterns using mathematical morphology
and curvature evaluation, IEEE Trans. Image Proc. 10 (7) (2001) 1010–1019.
[96] F. Benmansour, L. Cohen, Tubular structure segmentation based on minimal path
method and anisotropic enhancement, Int. J. Comput. Vis. 92 (2) (2011) 192–210.
[97] A. Sironi, V. Lepetit, P. Fua, Segmentation of the surfaces of the retinal layer from OCT
images, in: ICCV, 2015.
[98] A. Sironi, E. Turetken, V. Lepetit, P. Fua, Multiscale centerline detection, IEEE Trans.
Pattern Anal. Mach. Intell. 38 (7) (2016) 1327–1341.
[99] R. Annunziata, E. Trucco, Accelerating convolutional sparse coding for curvilinear
structures segmentation by refining SCIRD-TS filter banks, IEEE Trans. Med. Imaging
35 (11) (2016) 2381–2392.
[100] L. Gu, X. Zhang, H. Zhao, H. Li, L. Cheng, Segment 2D and 3D filaments by learning
structured and contextual features, IEEE Trans. Med. Imaging 36 (2) (2017) 569–606.
[101] L. Cohen, T. Deschamps, Grouping connected components using minimal path
techniques. Application to reconstruction of vessels in 2D and 3D images, in: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2001.
[102] M. Pechaud, R. Keriven, G. Peyre, Extraction of tubular structures over an orientation
domain, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2009.
[103] W. Liao, S. Worz, C. Kang, Z. Cho, K. Rohr, Progressive minimal path method for
segmentation of 2D and 3D line structures, IEEE Trans. Pattern Anal. Mach. Intell. 40
(3) (2018) 696–709.
[104] S. Yamamoto, H. Yokouchi, Automatic recognition of color fundus photographs, in:
K. Preston, M. Onoe (Eds.), Digital Processing of Biomedical Images, Springer, Berlin,
1976.
[105] D. Calvo, M. Ortega, M. Penedo, J. Rouco, Vascular intersection detection in retina
fundus images using a new hybrid approach, Comput. Biol. Med. 40 (1) (2010) 81–89.
[106] S. Yamamoto, H. Yokouchi, Automatic recognition of color fundus photographs, Dig.
Process. Biomed. Images 103 (1) (2011) 28–38.
[107] B. Al-Diri, A. Hunter, D. Steel, M. Habib, Automated analysis of retinal vascular
network connectivity, Comput. Med. Imaging Graph. 34 (6) (2010) 462–470.
[108] T. Qureshi, A. Hunter, B. Al-Diri, A Bayesian framework for the local configuration of
retinal junctions, in: CVPR, 2014.