Page 124 - Computational Retinal Image Analysis
P. 124

References  117




                    [89]  H. Fu, Y. Xu, S. Lin, D. Wong, J. Liu, DeepVessel: retinal vessel segmentation via deep
                       learning and conditional random field, in: MICCAI, 2016.
                    [90]  Z. Yan, X. Yang, K. Cheng, Joint segment-level and pixel-wise losses for deep learning
                       based retinal vessel segmentation, IEEE Trans. Biomed. Eng. 65 (9) (2018) 1912–1923.
                    [91]  K. Maninis, J. Pont-Tuset, P. Arbelaez, L. Gool, Deep retinal image understanding, in:
                       MICCAI, 2016.
                    [92]  H. Zhao, H. Li, S. Maurer-Stroh, L. Cheng, Synthesizing retinal and neuronal images
                       with generative adversarial nets, Med. Image Anal. 49 (2018) 14–26.
                    [93]  H. Zhao, H. Li, S. Maurer-Stroh, Y. Guo, Q. Deng, L. Cheng, Supervised segmentation
                       of un-annotated retinal fundus images by synthesis, IEEE Trans. Med. Imaging 38 (1)
                       (2018) 46–56.
                    [94]  R.  Frangi,  W.  Niessen,  K.  Vincken,  M.  Viergever,  Multiscale  vessel  enhancement
                       filtering, in: Medical Image Computing and Computer-Assisted Interventation
                       (MICCAI), 1998, pp. 130–137.
                    [95]  F. Zana, J. Klein, Segmentation of vessel-like patterns using mathematical morphology
                       and curvature evaluation, IEEE Trans. Image Proc. 10 (7) (2001) 1010–1019.
                    [96]  F.  Benmansour, L.  Cohen,  Tubular structure segmentation based on minimal path
                       method and anisotropic enhancement, Int. J. Comput. Vis. 92 (2) (2011) 192–210.
                    [97]  A. Sironi, V. Lepetit, P. Fua, Segmentation of the surfaces of the retinal layer from OCT
                       images, in: ICCV, 2015.
                    [98]  A. Sironi, E. Turetken, V. Lepetit, P. Fua, Multiscale centerline detection, IEEE Trans.
                       Pattern Anal. Mach. Intell. 38 (7) (2016) 1327–1341.
                    [99]  R.  Annunziata, E.  Trucco, Accelerating convolutional sparse coding for curvilinear
                       structures segmentation by refining SCIRD-TS filter banks, IEEE Trans. Med. Imaging
                       35 (11) (2016) 2381–2392.
                   [100]  L. Gu, X. Zhang, H. Zhao, H. Li, L. Cheng, Segment 2D and 3D filaments by learning
                       structured and contextual features, IEEE Trans. Med. Imaging 36 (2) (2017) 569–606.
                   [101]  L.  Cohen,  T.  Deschamps, Grouping connected components using minimal path
                       techniques. Application to reconstruction of vessels in 2D and 3D images, in: IEEE
                       Conference on Computer Vision and Pattern Recognition (CVPR), 2001.
                   [102]  M. Pechaud, R. Keriven, G. Peyre, Extraction of tubular structures over an orientation
                       domain, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
                       2009.
                   [103]  W. Liao, S. Worz, C. Kang, Z. Cho, K. Rohr, Progressive minimal path method for
                       segmentation of 2D and 3D line structures, IEEE Trans. Pattern Anal. Mach. Intell. 40
                       (3) (2018) 696–709.
                   [104]  S. Yamamoto, H. Yokouchi, Automatic recognition of color fundus photographs, in:
                       K. Preston, M. Onoe (Eds.), Digital Processing of Biomedical Images, Springer, Berlin,
                       1976.
                   [105]  D. Calvo, M. Ortega, M. Penedo, J. Rouco, Vascular intersection detection in retina
                       fundus images using a new hybrid approach, Comput. Biol. Med. 40 (1) (2010) 81–89.
                   [106]  S. Yamamoto, H. Yokouchi, Automatic recognition of color fundus photographs, Dig.
                       Process. Biomed. Images 103 (1) (2011) 28–38.
                   [107]  B.  Al-Diri, A.  Hunter, D.  Steel, M.  Habib, Automated analysis of retinal vascular
                       network connectivity, Comput. Med. Imaging Graph. 34 (6) (2010) 462–470.
                   [108]  T. Qureshi, A. Hunter, B. Al-Diri, A Bayesian framework for the local configuration of
                       retinal junctions, in: CVPR, 2014.
   119   120   121   122   123   124   125   126   127   128   129