Page 125 - Computational Retinal Image Analysis
P. 125

118    CHAPTER 6  Retinal vascular analysis: Segmentation, tracing, and beyond




                          [109]  S. Tamura, Y. Okamoto, K. Yanashima, Zero-crossing interval correction in tracing eye-
                              fundus blood vessels, Pattern Recogn. 21 (3) (1988) 227–233.
                          [110]  A. Can, H. Shen, J. Taylor, H. Tanenbaum, B. Roysam, Rapid automated tracing and
                              feature extraction from retinal fundus images using direct exploratory algorithm, IEEE
                              Trans. Inf. Tech. Biomed. 3 (2) (1999) 125–138.
                          [111]  C. Tsai, C. Stewart, H. Tanenbaum, B. Roysam, Model-based method for improving
                              the accuracy and repeatability of estimating vascular bifurcations and crossovers from
                              retinal fundus images, IEEE Trans. Inf. Technol. Biomed. 8 (2) (2004) 122–130.
                          [112]  T. Yedidya, R. Hartley, Tracking of blood vessels in retinal images using Kalman filter,
                              in: DICTA, 2008.
                          [113]  K.S. Lin, C.L. Tsai, C.H. Tsai, M. Sofka, S.J. Chen, W.Y. Lin, Retinal vascular tree
                              reconstruction  with anatomical  realism, IEEE  Trans. Biomed. Eng. 59  (12) (2012)
                              3337–3347.
                          [114]  J. De, T. Ma, H. Li, M. Dash, L. Cheng, Automated tracing of retinal blood vessels
                              using graphical models, in: Scandinavian Conference on Image Analysis, 2013.
                          [115]  J. De, H. Li, L. Cheng, Tracing retinal vessel trees by transductive inference, BMC
                              Bioinformatics 15 (20) (2014) 1–20.
                          [116]  L. Cheng, J. De, X. Zhang, F. Lin, H. Li, Tracing retinal blood vessels by matrix-forest
                              theorem of directed graphs, in: MICCAI, 2014.
                          [117]  J. De, L. Cheng, X. Zhang, F. Lin, H. Li, K. Ong, W. Yu, Y. Yu, S. Ahmed, A graph-
                              theoretical approach for tracing filamentary structures in neuronal and retinal images,
                              IEEE Trans. Med. Imaging 35 (1) (2016) 257–272.
                          [118]  J.  De, X.  Zhang, F.  Lin, L.  Cheng,  Transduction on directed graphs via absorbing
                              random walks, IEEE Trans. Pattern Anal. Mach. Intell. 40 (7) (2018) 1770–1784.
                          [119]  Q. Lau, M. Lee, W. Hsu, T. Wong, Simultaneously identifying all true vessels from
                              segmented retinal images, IEEE Trans. Biomed. Eng. 60 (7) (2013) 1851–1858.
                          [120]  X. Lyu, Q. Yang, S. Xia, S. Zhang, Construction of retinal vascular trees via curvature
                              orientation prior, in: IEEE International Conference on Bioinformatics and Biomedicine,
                              2016.
                           [121]  E. Bekkers, R. Duits, T. Berendschot, B.M. ter Haar Romeny, A multi-orientation
                              analysis approach to retinal vessel tracking, J. Math. Imaging Vis. 49 (3) (2014)
                              583–610.
                          [122]  E. Bekkers, R. Duits, A. Mashtakov, Y. Sachkov, Vessel tracking via sub-Riemannian
                              geodesics on the projective line bundle, in: International Conference on Geometric
                              Science of Information, 2017.
                          [123]  E.  Bekkers, D.  Chen, J.  Portegies, Nilpotent approximations of sub-Riemannian
                              distances for fast perceptual grouping of blood vessels in 2D and 3D, J. Math. Imaging
                              Vis. 60 (2018) 882–899.
                          [124]  S. Abbasi-Sureshjani, M. Favali, G. Citti, A. Sarti, B.M. ter Haar Romeny, Curvature
                              integration in a 5D kernel for extracting vessel connections in retinal images, IEEE
                              Trans. Image Process. 27 (2) (2018) 606–621.
                          [125]  J.  Zhang, E.  Bekkers, D.  Chen,  T.  Berendschot, J.  Schouten, J.  Pluim,  Y.  Shi,
                              B.  Dashtbozorg, B.M.  ter Haar Romeny, Reconnection of interrupted curvilinear
                              structures via cortically inspired completion for ophthalmologic images, IEEE Trans.
                              Biomed. Eng. 65 (5) (2018) 1151–1165.
                          [126]  C.  Ventura, J.  Pont-Tuset, S.  Caelles, K.  Maninis, L.V.  Gool, Iterative deep retinal
                              topology extraction, in: International Workshop on Patch-Based Techniques in Medical
                              Imaging, 2018.
   120   121   122   123   124   125   126   127   128   129   130