Page 123 - Computational Retinal Image Analysis
P. 123
116 CHAPTER 6 Retinal vascular analysis: Segmentation, tracing, and beyond
[69] M. Poon, G. Hamarneh, R. Abugharbieh, Live-vessel: extending livewire for
simultaneous extraction of optimal medial and boundary paths in vascular images, in:
MICCAI, 2007.
[70] A. Youssry, A. El-Rafei, S. Elramly, A quantum mechanics-based algorithm for vessel
segmentation in retinal images, Quantum Inf. Process. 15 (6) (2016) 2303–2323.
[71] C. Sinthanayothin, J. Boyce, H. Cook, T. Williamson, Automated localisation of the
optic disc, fovea, and retinal blood vessels from digital colour fundus images, Br. J.
Opthalmol. 83 (8) (1999) 902–910.
[72] C. Lupascu, D. Tegolo, E. Trucco, FABC: retinal vessel segmentation using AdaBoost,
IEEE Trans. Inf. Technol. Biomed. 14 (5) (2010) 1267–1274.
[73] D. Marin, A. Aquino, M. Gegundez-Arias, J. Bravo, A new supervised method for
blood vessel segmentation in retinal images by using gray-level and moment invariants-
based features, IEEE Trans. Med. Imaging 30 (1) (2011) 146–158.
[74] E. Ricci, R. Perfetti, Retinal blood vessel segmentation using line operators and support
vector classification, IEEE. Trans. Med. Imaging 26 (10) (2007) 1357–1365.
[75] C. Becker, R. Rigamonti, V. Lepetit, P. Fua, Supervised feature learning for curvilinear
structure segmentation, in: Medical Image Computing and Computer-Assisted
Interventation (MICCAI), 2013.
[76] G. Azzopardi, N. Strisciuglio, M. Vento, N. Petkov, Trainable COSFIRE filters for
vessel delineation with application to retinal images, Med. Image Anal. 19 (1) (2015)
46–57.
[77] G. Azzopardi, N. Petkov, Trainable COSFIRE filters for keypoint detection and pattern
recognition, IEEE Trans. Pattern Anal. Mach. Intell. 35 (2) (2013) 490–503.
[78] J. Soares, J. Leandro, R. Cesar, H. Jelinek, M. Cree, Retinal vessel segmentation using
the 2-D Gabor wavelet and supervised classification, IEEE Trans. Med. Imaging 25 (9)
(2006) 1214–1222.
[79] R. Rigamonti, V. Lepetit, Accurate and efficient linear structure segmentation by
leveraging ad hoc features, in: MICCAI, 2012.
[80] E. Turetken, F. Benmansour, B. Andres, H. Pfister, P. Fua, Reconstructing loopy
curvilinear structures using integer programming, in: CVPR, 2014.
[81] C. Becker, R. Rigamonti, V. Lepetit, P. Fua, Supervised feature learning for curvilinear
structure segmentation, in: MICCAI, 2013.
[82] J. Orlando, M. Blaschko, Learning fully-connected CRFs for blood vessel segmentation
in retinal images, in: MICCAI, 2014.
[83] J. Orlando, E. Prokofyeva, M. Blaschko, A discriminatively trained fully connected
conditional random field model for blood vessel segmentation in fundus images, IEEE
Trans. Biomed. Eng. 64 (1) (2017) 16–27.
[84] X. You, Q. Peng, Y. Yuan, Y. Cheung, J. Lei, Segmentation of retinal blood vessels using
the radial projection and semi-supervised approach, Pattern Recogn. 44 (10–11) (2011)
2314–2324.
[85] L. Gu, L. Cheng, Learning to boost filamentary structure segmentation, in: ICCV, 2015.
[86] Y. Ganin, V. Lempitsky, N4-Fields: neural network nearest neighbor fields for image
transforms, in: Asian Conference on Computer Vision, 2014, pp. 536–551.
[87] P. Liskowski, K. Krawiec, Segmenting retinal blood vessels with deep neural networks,
IEEE Trans. Med. Imaging 35 (11) (2016) 2369–2380.
[88] Q. Li, B. Feng, L. Xie, P. Liang, H. Zhang, T. Wang, A cross-modality learning approach
for vessel segmentation in retinal images, IEEE Trans. Med. Imaging 35 (1) (2016)
109–118.