Page 123 - Computational Retinal Image Analysis
P. 123

116    CHAPTER 6  Retinal vascular analysis: Segmentation, tracing, and beyond




                           [69]  M.  Poon, G.  Hamarneh, R.  Abugharbieh, Live-vessel: extending livewire for
                              simultaneous extraction of optimal medial and boundary paths in vascular images, in:
                              MICCAI, 2007.
                           [70]  A. Youssry, A. El-Rafei, S. Elramly, A quantum mechanics-based algorithm for vessel
                              segmentation in retinal images, Quantum Inf. Process. 15 (6) (2016) 2303–2323.
                           [71]  C. Sinthanayothin, J. Boyce, H. Cook, T. Williamson, Automated localisation of the
                              optic disc, fovea, and retinal blood vessels from digital colour fundus images, Br. J.
                              Opthalmol. 83 (8) (1999) 902–910.
                           [72]  C. Lupascu, D. Tegolo, E. Trucco, FABC: retinal vessel segmentation using AdaBoost,
                              IEEE Trans. Inf. Technol. Biomed. 14 (5) (2010) 1267–1274.
                           [73]  D.  Marin, A.  Aquino, M.  Gegundez-Arias, J.  Bravo, A new supervised method for
                              blood vessel segmentation in retinal images by using gray-level and moment invariants-
                              based features, IEEE Trans. Med. Imaging 30 (1) (2011) 146–158.
                           [74]  E. Ricci, R. Perfetti, Retinal blood vessel segmentation using line operators and support
                              vector classification, IEEE. Trans. Med. Imaging 26 (10) (2007) 1357–1365.
                           [75]  C. Becker, R. Rigamonti, V. Lepetit, P. Fua, Supervised feature learning for curvilinear
                              structure  segmentation,  in: Medical  Image Computing  and Computer-Assisted
                              Interventation (MICCAI), 2013.
                           [76]  G.  Azzopardi, N.  Strisciuglio, M.  Vento, N.  Petkov, Trainable COSFIRE filters for
                              vessel delineation with application to retinal images, Med. Image Anal. 19 (1) (2015)
                              46–57.
                           [77]  G. Azzopardi, N. Petkov, Trainable COSFIRE filters for keypoint detection and pattern
                              recognition, IEEE Trans. Pattern Anal. Mach. Intell. 35 (2) (2013) 490–503.
                           [78]  J. Soares, J. Leandro, R. Cesar, H. Jelinek, M. Cree, Retinal vessel segmentation using
                              the 2-D Gabor wavelet and supervised classification, IEEE Trans. Med. Imaging 25 (9)
                              (2006) 1214–1222.
                           [79]  R.  Rigamonti,  V.  Lepetit,  Accurate and efficient linear structure segmentation by
                              leveraging ad hoc features, in: MICCAI, 2012.
                           [80]  E.  Turetken, F.  Benmansour, B.  Andres, H.  Pfister, P.  Fua, Reconstructing loopy
                              curvilinear structures using integer programming, in: CVPR, 2014.
                           [81]  C. Becker, R. Rigamonti, V. Lepetit, P. Fua, Supervised feature learning for curvilinear
                              structure segmentation, in: MICCAI, 2013.
                           [82]  J. Orlando, M. Blaschko, Learning fully-connected CRFs for blood vessel segmentation
                              in retinal images, in: MICCAI, 2014.
                           [83]  J. Orlando, E. Prokofyeva, M. Blaschko, A discriminatively trained fully connected
                              conditional random field model for blood vessel segmentation in fundus images, IEEE
                              Trans. Biomed. Eng. 64 (1) (2017) 16–27.
                           [84]  X. You, Q. Peng, Y. Yuan, Y. Cheung, J. Lei, Segmentation of retinal blood vessels using
                              the radial projection and semi-supervised approach, Pattern Recogn. 44 (10–11) (2011)
                              2314–2324.
                           [85]  L. Gu, L. Cheng, Learning to boost filamentary structure segmentation, in: ICCV, 2015.
                           [86]  Y. Ganin, V. Lempitsky, N4-Fields: neural network nearest neighbor fields for image
                              transforms, in: Asian Conference on Computer Vision, 2014, pp. 536–551.
                           [87]  P. Liskowski, K. Krawiec, Segmenting retinal blood vessels with deep neural networks,
                              IEEE Trans. Med. Imaging 35 (11) (2016) 2369–2380.
                           [88]  Q. Li, B. Feng, L. Xie, P. Liang, H. Zhang, T. Wang, A cross-modality learning approach
                              for vessel segmentation in retinal images, IEEE Trans. Med. Imaging 35 (1) (2016)
                              109–118.
   118   119   120   121   122   123   124   125   126   127   128