Page 126 - Computational Retinal Image Analysis
P. 126
References 119
[127] F. Uslu, A. Bharath, A multi-task network to detect junctions in retinal vasculature, in:
MICCAI, 2018.
[128] F. Caliva, A. Hunter, P. Chudzik, G. Ometto, L. Antiga, B. Al-Diri, A fluid-dynamic
based approach to reconnect the retinal vessels in fundus photography, in: International
Conference of the IEEE Engineering in Medicine and Biology Society, 2017.
[129] H. Shen, B. Roysam, C. Stewart, J. Turner, H. Tanenbaum, Optimal scheduling of
tracing computations for real-time vascular landmark extraction from retinal fundus
images, IEEE Trans. Inf. Technol. Biomed. 5 (1) (2001) 77–91.
[130] K. Al-Kofahi, S. Lasek, D. Szarowski, C. Pace, G. Nagy, J. Turner, B. Roysam, Rapid
automated three-dimensional tracing of neurons from confocal image stacks, IEEE
Trans. Inf. Tech. Biomed. 6 (2) (2002) 171–187.
[131] K. Brown, G. Barrionuevo, A. Canty, V.D. Paola, J. Hirsch, G. Jefferis, J. Lu, M. Snippe,
I. Sugihara, G. Ascoli, The DIADEM data sets: representative light microscopy
images of neuronal morphology to advance automation of digital reconstructions,
Neuroinformatics 9 (2011) 143–157.
[132] M. Radojevic, E. Meijering, Automated neuron tracing using probability hypothesis
density filtering, Bioinformatics 33 (7) (2017) 1073–1080.
[133] M. Martinez-Perez, A. Hughes, A. Stanton, S. Thom, N. Chapman, A. Bharath,
K. Parker, Retinal vascular tree morphology: a semi-automatic quantification, IEEE
Trans. Biomed. Eng. 49 (8) (2002) 912–917.
[134] K. Rothaus, X. Jiang, P. Rhiem, Separation of the retinal vascular graph in arteries and
veins based upon structural knowledge, Image Vis. Comput. 27 (7) (2009) 864–875.
[135] H. Narasimha-Iyer, J. Beach, B. Khoobehi, B. Roysam, Automatic identification of
retinal arteries and veins from dual-wavelength images using structural and functional
features, IEEE Trans. Biomed Eng. 54 (8) (2007) 1427–1435.
[136] E. Turetken, C. Blum, G. Gonzalez, P. Fua, Reconstructing geometrically consistent tree
structures from noisy images, in: Medical Image Computing and Computer-Assisted
Interventation (MICCAI), 2010.
[137] E. Pellegrini, G. Robertson, T. MacGillivray, J. van Hemert, G. Houston, E. Trucco,
A graph cut approach to artery/vein classification in ultra-widefield scanning laser
ophthalmoscopy, IEEE Trans. Med. Imaging 37 (2) (2018) 516–526.
[138] V. Joshi, J. Reinhardt, M. Garvin, M. Abramoff, Automated method for identification
and artery-venous classification of vessel trees in retinal vessel networks, PLoS ONE 9
(2) (2014) 1–12.
[139] M. Niemeijer, X. Xu, A. Dumitrescu, P. Gupta, B.V. Ginneken, J. Folk, M. Abramoff,
Automated measurement of the arteriolar-to-venular width ratio in digital color fundus
photographs, IEEE Trans. Med. Imaging 30 (11) (2011) 1941–1950.
[140] U. Nguyen, A. Bhuiyan, L. Park, R. Kawasaki, T. Wong, J. Wang, P. Mitchell,
K. Ramamohanarao, An automated method for retinal arteriovenous nicking
quantification from color fundus images, IEEE Trans. Biomed. Eng. 60 (11) (2013)
3194–3203.
[141] M. Aghamohamadian-Sharbaf, H. Pourreza, T. Banaee, A novel curvature-based
algorithm for automatic grading of retinal blood vessel tortuosity, IEEE J. Biomed.
Health Inform. 20 (2) (2016) 586–595.
[142] M. Adam, W. Aenchbacher, T. Kurzweg, J. Hsu, Plenoptic ophthalmoscopy: a novel
imaging technique, Ophthalmic Surg. Lasers Imaging Retina 9 (7) (2018) 3178–3192.
[143] M. Haeker, M. Abramoff, R. Kardon, M. Sonka, Segmentation of the surfaces of the
retinal layer from OCT images, in: MICCAI, 2006.