Page 126 - Computational Retinal Image Analysis
P. 126

References  119




                   [127]  F. Uslu, A. Bharath, A multi-task network to detect junctions in retinal vasculature, in:
                       MICCAI, 2018.
                   [128]  F. Caliva, A. Hunter, P. Chudzik, G. Ometto, L. Antiga, B. Al-Diri, A fluid-dynamic
                       based approach to reconnect the retinal vessels in fundus photography, in: International
                       Conference of the IEEE Engineering in Medicine and Biology Society, 2017.
                   [129]  H.  Shen, B.  Roysam, C.  Stewart, J.  Turner, H.  Tanenbaum, Optimal scheduling of
                       tracing computations for real-time vascular landmark extraction from retinal fundus
                       images, IEEE Trans. Inf. Technol. Biomed. 5 (1) (2001) 77–91.
                   [130]  K. Al-Kofahi, S. Lasek, D. Szarowski, C. Pace, G. Nagy, J. Turner, B. Roysam, Rapid
                       automated three-dimensional tracing of neurons from confocal image stacks, IEEE
                       Trans. Inf. Tech. Biomed. 6 (2) (2002) 171–187.
                   [131]  K. Brown, G. Barrionuevo, A. Canty, V.D. Paola, J. Hirsch, G. Jefferis, J. Lu, M. Snippe,
                       I.  Sugihara, G.  Ascoli,  The DIADEM data sets: representative light microscopy
                       images of neuronal morphology to advance automation of digital reconstructions,
                       Neuroinformatics 9 (2011) 143–157.
                   [132]  M. Radojevic, E. Meijering, Automated neuron tracing using probability hypothesis
                       density filtering, Bioinformatics 33 (7) (2017) 1073–1080.
                   [133]  M.  Martinez-Perez,  A.  Hughes,  A.  Stanton,  S.  Thom,  N.  Chapman, A.  Bharath,
                       K. Parker, Retinal vascular tree morphology: a semi-automatic quantification, IEEE
                       Trans. Biomed. Eng. 49 (8) (2002) 912–917.
                   [134]  K. Rothaus, X. Jiang, P. Rhiem, Separation of the retinal vascular graph in arteries and
                       veins based upon structural knowledge, Image Vis. Comput. 27 (7) (2009) 864–875.
                   [135]  H. Narasimha-Iyer, J. Beach, B. Khoobehi, B. Roysam, Automatic identification of
                       retinal arteries and veins from dual-wavelength images using structural and functional
                       features, IEEE Trans. Biomed Eng. 54 (8) (2007) 1427–1435.
                   [136]  E. Turetken, C. Blum, G. Gonzalez, P. Fua, Reconstructing geometrically consistent tree
                       structures from noisy images, in: Medical Image Computing and Computer-Assisted
                       Interventation (MICCAI), 2010.
                   [137]  E. Pellegrini, G. Robertson, T. MacGillivray, J. van Hemert, G. Houston, E. Trucco,
                       A  graph  cut  approach  to  artery/vein  classification  in  ultra-widefield  scanning  laser
                       ophthalmoscopy, IEEE Trans. Med. Imaging 37 (2) (2018) 516–526.
                   [138]  V. Joshi, J. Reinhardt, M. Garvin, M. Abramoff, Automated method for identification
                       and artery-venous classification of vessel trees in retinal vessel networks, PLoS ONE 9
                       (2) (2014) 1–12.
                   [139]  M. Niemeijer, X. Xu, A. Dumitrescu, P. Gupta, B.V. Ginneken, J. Folk, M. Abramoff,
                       Automated measurement of the arteriolar-to-venular width ratio in digital color fundus
                       photographs, IEEE Trans. Med. Imaging 30 (11) (2011) 1941–1950.
                   [140]  U.  Nguyen,  A.  Bhuiyan, L.  Park, R.  Kawasaki,  T.  Wong, J.  Wang, P.  Mitchell,
                       K.  Ramamohanarao,  An automated method for retinal arteriovenous nicking
                       quantification from color fundus images, IEEE Trans. Biomed. Eng. 60 (11) (2013)
                       3194–3203.
                   [141]  M.  Aghamohamadian-Sharbaf, H.  Pourreza,  T.  Banaee,  A novel curvature-based
                       algorithm for automatic grading of retinal blood vessel tortuosity, IEEE J. Biomed.
                       Health Inform. 20 (2) (2016) 586–595.
                   [142]  M. Adam, W. Aenchbacher, T. Kurzweg, J. Hsu, Plenoptic ophthalmoscopy: a novel
                       imaging technique, Ophthalmic Surg. Lasers Imaging Retina 9 (7) (2018) 3178–3192.
                   [143]  M. Haeker, M. Abramoff, R. Kardon, M. Sonka, Segmentation of the surfaces of the
                       retinal layer from OCT images, in: MICCAI, 2006.
   121   122   123   124   125   126   127   128   129   130   131