Page 224 - Computational Retinal Image Analysis
P. 224
220 CHAPTER 11 Structure-preserving guided retinal image filtering
[40] Y. Jiang, H. Xia, Y. Xu, J. Cheng, H. Fu, L. Duan, Z. Meng, J. Liu, Optic disc and cup
segmentation with blood vessel removal from fundus images for glaucoma detection, in:
40th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), 2018, pp. 862–865.
[41] J. Cheng, Z. Zhang, D. Tao, D.W.K. Wong, J. Liu, M. Baskaran, T. Aung, T.Y. Wong,
Similarity regularized sparse group lasso for cup to disc ratio computation, Biomed. Opt.
Express 8 (8) (2017) 3763–3777.
[42] J. Cheng, Sparse range-constrained learning and its application for medical image
grading, IEEE Trans. Med. Imaging 37 (12) (2018) 2729–2738.
[43] Y. Xu, J. Liu, S. Lin, D. Xu, C.Y. Cheung, T. Aung, T.Y. Wong, Efficient optic cup
detection from intra-image learning with retinal structure priors, in: Proc. MICCAI, vol.
15, 2012, pp. 58–65.
[44] Y. Zheng, D. Stambolian, J. O’Brien, J.C. Gee, Optic disc and cup segmentation from
color fundus photograph using graph cut with priors, in: Proc. MICCAI, 2013, pp.
75–82.
[45] J. Zilly, J.M. Buhmann, D. Mahapatra, Glaucoma detection using entropy sampling
and ensemble learning for automatic optic cup and disc segmentation, Comput. Med.
Imaging Graph. 55 (2017) 28–41.
[46] E. Trucco, A. Ruggeri, T. Karnowski, L. Giancardo, E. Chaum, J.P. Hubschman, B. Al-
Diri, C.Y. Cheung, D. Wong, M. Abramoff, G. Lim, D. Kumar, P. Burlina, N.M. Bressler,
H.F. Jelinek, F. Meriaudeau, G. Quellec, T. Macgillivray, B. Dhillon, Validating retinal
fundus image analysis algorithms: issues and a proposal, Invest. Ophthalmol. Vis. Sci. 54
(5) (2013) 3546–3559.
[47] D. Pascolini, S.P. Mariotti, Global estimates of visual impairment: 2010, Br. J. Ophthalmol.
96 (5) (2012) 614–618, https://doi.org/10.1136/bjophthalmol-2011-300539.
[48] S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G.P. Pokharel,
S. Mariotti, Global data on visual impairment in the year 2002, Bull. World Health Org.
82 (2004) 844–851.
[49] E. Peli, T. Peli, Restoration of retinal images obtained through cataracts, IEEE Trans.
Med. Imaging 8 (4) (1989) 401–406.
[50] R.T. Tan, Visibility in bad weather from a single image, in: IEEE Conference on
Computer Vision and Pattern Recognition, 2008, pp. 1–8.
[51] R. Fattal, Single image dehazing, ACM Trans. Graph. 27 (3) (2008) 1–9.
[52] K. He, J. Sun, X. Tang, Single image haze removal using dark channel prior, IEEE Trans.
Pattern Anal. Mach. Intell. 33 (12) (2011) 2341–2353.
[53] K. He, J. Sun, X. Tang, Guided image filtering, IEEE Trans. Pattern Anal. Mach. Intell.
35 (6) (2013) 1397–1409.
[54] Z. Li, J. Zheng, Z. Zhu, W. Yao, S. Wu, Weighted guided image filtering, IEEE Trans.
Image Process. 24 (1) (2015) 120–129.
[55] Z. Li, J. Zheng, Edge-preserving decomposition-based single image haze removal, IEEE
Trans. Image Process. 24 (12) (2015) 5432–5441.
[56] D. Min, S. Choi, J. Lu, B. Ham, K. Sohn, M. Do, Fast global image smoothing based on
weighted least squares, IEEE Trans. Image Process. 23 (2014) 5638–5653.
[57] Z.G. Li, J.H. Zheng, S. Rahardja, Detail-enhanced exposure fusion, IEEE Trans. Image
Process. 21 (11) (2012) 4672–4676.
[58] Z. Farbman, R. Fattal, D. Lischinski, R. Szeliski, Edge-preserving Decompositions for
multi-scale tone and detail manipulation, ACM Trans. Graph. 27 (3) (2008) 67:1–67:10.
[59] Z. Li, J. Zheng, Single image de-hazing using globally guided image filtering, IEEE