Page 223 - Computational Retinal Image Analysis
P. 223
References 219
T.Y. Wong, Convex hull based neuro-retinal optic cup ellipse optimization in glaucoma
diagnosis, in: International Conference of IEEE Engineering in Medicine and Biology
Society, 2009, pp. 1441–1444.
[25] G.D. Joshi, J. Sivaswamy, S.R. Krishnadas, Optic disk and cup segmentation from
monocular color retinal images for glaucoma assessment, IEEE Trans. Med. Imaging 30
(2011) 1192–1205.
[26] J.B. Jonas, W.M. Budde, S. Panda-Jonas, Ophthalmoscopic evaluation of the optic nerve
head, Surv. Ophthalmol. 43 (4) (1999) 293–320.
[27] F. Yin, J. Liu, S.H. Ong, Y. Sun, D.W.K. Wong, N.M. Tan, C. Cheung, M. Baskaran,
T. Aung, T.Y. Wong, Model-based optic nerve head segmentation on retinal fundus
images, in: International Conference of the IEEE Engineering in Medicine and Biology
Society, 2011, pp. 2626–2629.
[28] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional
neural networks, in: Advances in Neural Information Processing Systems, 2012, pp.
1097–1105.
[29] H. Fu, J. Cheng, Y. Xu, C. Zhang, D.W.K. Wong, J. Liu, X. Cao, Disc-aware ensemble
network for glaucoma screening from fundus image, IEEE Trans. Med. Imaging 37 (11)
(2018) 2493–2501.
[30] A. Sevastopolsky, Optic disc and cup segmentation methods for glaucoma detection with
modification of U-Net convolutional neural network, Pattern Recogn. Image Anal. 27 (3)
(2017) 618–624.
[31] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic
segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 3431–3440.
[32] R.R. Allingham, K.F. Damji, S. Freedman, S.E. Moroi, G. Shafranov, Shields’ Textbook
of Glaucoma, fifth ed., Lippincott Williams & Wilkins, Philadelphia, PA, 2005.
[33] K. Stapor, A. Świtonski, R. Chrastek, G. Michelson, Segmentation of fundus eye images
using methods of mathematical morphology for glaucoma diagnosis, in: Proc. Int. Conf.
Computer Science, 2004, pp. 41–48.
[34] N. Inoue, K. Yanashima, K. Magatani, T. Kurihara, Development of a simple diagnostic
method for the glaucoma using ocular fundus pictures, in: International Conference of
the IEEE Engineering in Medicine and Biology Society, 2005, pp. 3355–3358.
[35] G.D. Joshi, J. Sivaswamy, K. Karan, R. Krishnadas, Optic disk and cup boundary
detection using regional information, in: Proc. IEEE Int. Symp. Biomed. Imaging, 2010,
pp. 948–951.
[36] D.W.K. Wong, J. Liu, J.H. Lim, X. Jia, F. Yin, H. Li, T.Y. Wong, Level-set based
automatic cup-to-disc ratio determination using retinal fundus images in ARGALI, in:
International Conference of the IEEE Engineering in Medicine and Biology Society,
2008, pp. 2266–2269.
[37] D.W.K. Wong, J. Liu, J.H. Lim, H. Li, T.Y. Wong, Automated detection of kinks from
blood vessels for optic cup segmentation in retinal images, in: Proc. SPIE 7260, 2009,
p. 72601J.
[38] Y. Xu, D. Xu, S. Lin, J. Liu, J. Cheng, C.Y. Cheung, T. Aung, T.Y. Wong, Sliding window
and regression based cup detection in digital fundus images for glaucoma diagnosis, in:
MICCAI 2011, Part III, LNCS, 2011, pp. 1–8.
[39] F. Yin, J. Liu, D.W.K. Wong, N.M. Tan, C. Cheung, M. Baskaran, T. Aung,
T.Y. Wong, Automated segmentation of optic disc and optic cup in fundus images
for glaucoma diagnosis, in: IEEE Int. Symp. on Computer-Based Medical Systems,
2012, pp. 1–6.