Page 225 - Computational Retinal Image Analysis
P. 225
References 221
Trans. Image Process. 27 (1) (2018) 442–450.
[60] J.-H. Kim, W.-D. Jang, J.-Y. Sim, C.-S. Kim, Optimized contrast enhancement for
real-time image and video dehazing, J. Vis. Commun. Image Represent. 24 (3) (2013)
410–425.
[61] A.G. Marrugo, M.S. Millan, M. Sorel, F. Sroubek, Retinal image restoration by means of
blind deconvolution, J. Biomed. Opt. 16 (11) (2011) 116016.
[62] Z. Zhang, F. Yin, J. Liu, W.K. Wong, N.M. Tan, B.H. Lee, J. Cheng, T.Y. Wong, ORIGA-
light: an online retinal fundus image database for glaucoma analysis and research, in:
International Conference of the IEEE Engineering in Medicine and Biology Society,
2010, pp. 3065–3068.
[63] A.K. Tripathi, S. Mukhopadhyay, A.K. Dhara, Performance metrics for image contrast,
in: Int. Conf. Image Inf. Process., 2011, pp. 1–4.
[64] M. Foracchia, E. Grisan, A. Ruggeri, Luminosity and contrast normalization in retinal
images, Med. Image Anal. 9 (3) (2005) 179–190.
[65] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–444.
[66] O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image
segmentation, in: Medical Image Computing and Computer-Assisted Intervention: Part
III, Springer International Publishing, 2015, pp. 234–241.
[67] J. Duch, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and
stochastic optimization, J. Mach. Learn. Res. 12 (2011) 2121–2159.