Page 84 - Computational Retinal Image Analysis
P. 84
References 75
[111] S.K. Saha, D. Xiao, S. Frost, Y. Kanagasingam, A two-step approach for longitudinal
registration of retinal images, J. Med. Syst. 40 (12) (2016) 277, https://doi.org/10.1007/
s10916-016-0640-0.
[112] G.K. Matsopoulos, N.A. Mouravliansky, K.K. Delibasis, K.S. Nikita, Automatic retinal
image registration scheme using global optimization techniques, IEEE Trans. Inf.
Technol. Biomed. 3 (1) (1999) 47–60, https://doi.org/10.1109/4233.748975.
[113] F. Laliberte, L. Gagnon, Y. Sheng, Registration and fusion of retinal images—an
evaluation study, IEEE Trans. Med. Imaging 22 (5) (2003) 661–673, https://doi.
org/10.1109/TMI.2003.812263.
[114] C.V. Stewart, C.-L. Tsai, B. Roysam, The dual-bootstrap iterative closest point algorithm
with application to retinal image registration, IEEE Trans. Med. Imaging 22 (11) (2003)
1379–1394, https://doi.org/10.1109/TMI.2003.819276.
[115] G.K. Matsopoulos, P.A. Asvestas, N.A. Mouravliansky, K.K. Delibasis, Multimodal
registration of retinal images using self organizing maps, IEEE Trans. Med. Imaging 23
(12) (2004) 1557–1563, https://doi.org/10.1109/TMI.2004.836547.
[116] T.E. Choe, G. Medioni, I. Cohen, A.C. Walsh, S.R. Sadda, 2-D registration and 3-D
shape inference of the retinal fundus from fluorescein images. Med. Image Anal. 12 (2)
(2008) 174–190, https://doi.org/10.1016/j.media.2007.10.002.
[117] G. Yang, C.V. Stewart, M. Sofka, C.L. Tsai, Registration of challenging image pairs:
initialization, estimation, and decision, IEEE Trans. Pattern Anal. Mach. Intell. 29 (11)
(2007) 1973–1989, https://doi.org/10.1109/TPAMI.2007.1116.
[118] A.R. Chaudhry, J.C. Klein, Ophthalmologic image registration based on shape-context:
application to Fundus Autofluorescence (FAF) images, Visualization, Imaging, and
Image Processing (VIIP), September, Palma de Mallorca, Spain. Medical Imaging, track
630-055, 2008.
[119] C.L. Tsai, C.Y. Li, G. Yang, K.S. Lin, The edge-driven dual-bootstrap iterative closest
point algorithm for registration of multimodal fluorescein angiogram sequence, IEEE
Trans. Med. Imaging 29 (3) (2010) 636–649, https://doi.org/10.1109/TMI.2009.2030324.
[120] J. Chen, J. Tian, N. Lee, J. Zheng, R.T. Smith, A.F. Laine, A partial intensity invariant
feature descriptor for multimodal retinal image registration, IEEE Trans. Biomed. Eng.
57 (7) (2010) 1707–1718, https://doi.org/10.1109/TBME.2010.2042169.
[121] K. Deng, J. Tian, J. Zheng, X. Zhang, X. Dai, M. Xu, Retinal fundus image registration
via vascular structure graph matching, J. Biomed. Imaging 2010 (2010) 14:1–14:13,
https://doi.org/10.1155/2010/906067.
[122] A. Perez-Rovira, R. Cabido, E. Trucco, S.J. McKenna, J.P. Hubschman, RERBEE:
robust efficient registration via bifurcations and elongated elements applied to retinal
fluorescein angiogram sequences, IEEE Trans. Med. Imaging 31 (1) (2012) 140–150,
https://doi.org/10.1109/TMI.2011.2167517.
[123] S. Gharabaghi, S. Daneshvar, M.H. Sedaaghi, Retinal image registration using geometrical
features, J. Dig. Imaging 26 (2) (2013) 248–258, https://doi.org/10.1007/s10278-012-9501-7.
[124] L. Chen, X. Huang, J. Tian, Retinal image registration using topological vascular tree
segmentation and bifurcation structures, Biomed. Signal Process. Control 16 (2015)
22–31, https://doi.org/10.1016/j.bspc.2014.10.009.
[125] J.A. Lee, J. Cheng, B.H. Lee, E.P. Ong, G. Xu, D.W.K. Wong, J. Liu, A. Laude, T.H. Lim,
A low-dimensional step pattern analysis algorithm with application to multimodal retinal
image registration, IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 1046–1053, https://doi.org/10.1109/CVPR.2015.7298707.
[126] G. Wang, Z. Wang, Y. Chen, W. Zhao, Robust point matching method for multimodal