Page 84 - Computational Retinal Image Analysis
P. 84

References   75




                   [111] S.K. Saha, D. Xiao, S. Frost, Y. Kanagasingam, A two-step approach for longitudinal
                      registration of retinal images, J. Med. Syst. 40 (12) (2016) 277, https://doi.org/10.1007/
                      s10916-016-0640-0.
                   [112] G.K. Matsopoulos, N.A. Mouravliansky, K.K. Delibasis, K.S. Nikita, Automatic retinal
                      image registration scheme using global optimization techniques, IEEE  Trans. Inf.
                      Technol. Biomed. 3 (1) (1999) 47–60, https://doi.org/10.1109/4233.748975.
                   [113] F.  Laliberte, L.  Gagnon,  Y.  Sheng, Registration and fusion of retinal images—an
                      evaluation study, IEEE  Trans. Med. Imaging 22 (5) (2003) 661–673,  https://doi.
                      org/10.1109/TMI.2003.812263.
                   [114] C.V. Stewart, C.-L. Tsai, B. Roysam, The dual-bootstrap iterative closest point algorithm
                      with application to retinal image registration, IEEE Trans. Med. Imaging 22 (11) (2003)
                      1379–1394, https://doi.org/10.1109/TMI.2003.819276.
                   [115] G.K.  Matsopoulos, P.A.  Asvestas,  N.A.  Mouravliansky, K.K.  Delibasis, Multimodal
                      registration of retinal images using self organizing maps, IEEE Trans. Med. Imaging 23
                      (12) (2004) 1557–1563, https://doi.org/10.1109/TMI.2004.836547.
                   [116] T.E. Choe, G. Medioni, I. Cohen, A.C. Walsh, S.R. Sadda, 2-D registration and 3-D
                      shape inference of the retinal fundus from fluorescein images. Med. Image Anal. 12 (2)
                      (2008) 174–190, https://doi.org/10.1016/j.media.2007.10.002.
                   [117] G. Yang, C.V. Stewart, M. Sofka, C.L. Tsai, Registration of challenging image pairs:
                      initialization, estimation, and decision, IEEE Trans. Pattern Anal. Mach. Intell. 29 (11)
                      (2007) 1973–1989, https://doi.org/10.1109/TPAMI.2007.1116.
                   [118] A.R. Chaudhry, J.C. Klein, Ophthalmologic image registration based on shape-context:
                      application to Fundus  Autofluorescence  (FAF) images,  Visualization,  Imaging, and
                      Image Processing (VIIP), September, Palma de Mallorca, Spain. Medical Imaging, track
                      630-055, 2008.
                   [119] C.L. Tsai, C.Y. Li, G. Yang, K.S. Lin, The edge-driven dual-bootstrap iterative closest
                      point algorithm for registration of multimodal fluorescein angiogram sequence, IEEE
                      Trans. Med. Imaging 29 (3) (2010) 636–649, https://doi.org/10.1109/TMI.2009.2030324.
                   [120] J. Chen, J. Tian, N. Lee, J. Zheng, R.T. Smith, A.F. Laine, A partial intensity invariant
                      feature descriptor for multimodal retinal image registration, IEEE Trans. Biomed. Eng.
                      57 (7) (2010) 1707–1718, https://doi.org/10.1109/TBME.2010.2042169.
                   [121] K. Deng, J. Tian, J. Zheng, X. Zhang, X. Dai, M. Xu, Retinal fundus image registration
                      via vascular structure graph matching, J. Biomed. Imaging 2010 (2010) 14:1–14:13,
                      https://doi.org/10.1155/2010/906067.
                   [122] A.  Perez-Rovira, R.  Cabido, E.  Trucco, S.J.  McKenna, J.P.  Hubschman, RERBEE:
                      robust efficient registration via bifurcations and elongated elements applied to retinal
                      fluorescein angiogram sequences, IEEE Trans. Med. Imaging 31 (1) (2012) 140–150,
                      https://doi.org/10.1109/TMI.2011.2167517.
                   [123] S. Gharabaghi, S. Daneshvar, M.H. Sedaaghi, Retinal image registration using geometrical
                      features, J. Dig. Imaging 26 (2) (2013) 248–258, https://doi.org/10.1007/s10278-012-9501-7.
                   [124] L. Chen, X. Huang, J. Tian, Retinal image registration using topological vascular tree
                      segmentation and bifurcation structures, Biomed. Signal Process. Control 16 (2015)
                      22–31, https://doi.org/10.1016/j.bspc.2014.10.009.
                   [125] J.A. Lee, J. Cheng, B.H. Lee, E.P. Ong, G. Xu, D.W.K. Wong, J. Liu, A. Laude, T.H. Lim,
                      A low-dimensional step pattern analysis algorithm with application to multimodal retinal
                      image registration, IEEE Conference on Computer  Vision and Pattern Recognition
                      (CVPR), 2015, pp. 1046–1053, https://doi.org/10.1109/CVPR.2015.7298707.
                   [126] G. Wang, Z. Wang, Y. Chen, W. Zhao, Robust point matching method for multimodal
   79   80   81   82   83   84   85   86   87   88   89