Page 82 - Computational Retinal Image Analysis
P. 82

References   73




                      tomography, Opt. Lett. 29 (7) (2004) 736–738, https://doi.org/10.1364/OL.29.000736.
                   [81] H. Ren, Z. Ding, Y. Zhao, J. Miao, J.S. Nelson, Z. Chen, Phase-resolved functional
                      optical coherence tomography: simultaneous imaging of in situ tissue structure,
                      blood flow velocity, standard deviation, birefringence, and Stokes vectors in human
                      skin, Opt. Lett. 27 (19) (2002) 1702–1704, https://doi.org/10.1364/OL.27.001702.
                    [82] M.  Kobayashi, H.  Hanafusa, K.  Takada, J.  Noda, Polarization-independent
                      interferometric optical-time-domain reflectometer, J. Lightwave Technol. 9 (5) (1991)
                      623–628.
                    [83] J. Schmitt, Array detection for speckle reduction in optical coherence microscopy, Phys.
                      Med. Biol. 42 (7) (1997) 1427.
                    [84] R.J.  Zawadzki, B.  Cense, Y.  Zhang, S.S.  Choi, D.T.  Miller, J.S.  Werner, Ultrahigh-
                      resolution optical coherence tomography with monochromatic and chromatic
                      aberration correction, Opt. Express 16 (11) (2008) 8126–8143, https://doi.org/10.1364/
                      OE.16.008126.
                    [85] Z. Jian, L. Yu, B. Rao, B. Tromberg, Z. Chen, Three-dimensional speckle suppression
                      in optical coherence tomography based on the curvelet transform, Opt. Express 18 (2)
                      (2010) 1024–1032.
                    [86] C.  Gyger, R.  Cattin, P.  Hasler, P.  Maloca,  Three-dimensional speckle reduction in
                      optical  coherence  tomography  through  structural  guided  filtering,  Opt.  Eng.  53  (7)
                      (2014) 1024–1032.
                    [87] L. Bian, J. Suo, F. Chen, Q. Dai, Multiframe denoising of high-speed optical coherence
                      tomography data using interframe and intraframe priors, J. Biomed. Opt. 20 (2015)
                      36006.
                    [88] N.  Meitav, E.N.  Ribak, Improving retinal image resolution with iterative weighted
                      shift-and-add, J. Opt. Soc. Am. A 28 (7) (2011) 1395–1402, https://doi.org/10.1364/
                      JOSAA.28.001395.
                    [89] G. Molodij, E.N. Ribak, M. Glanc, G. Chenegros, Enhancing retinal images by extracting
                      structural information, Opt. Commun. 313 (2014) 321–328, https://doi.org/10.1016/j.
                      optcom.2013.10.011.
                    [90] C.  Hernandez-Matas,  X.  Zabulis, Super resolution  for fundoscopy based  on 3D
                      image registration, 36th  Annual International Conference of the IEEE Engineering
                      in Medicine and Biology Society, 2014, pp. 6332–6338,  https://doi.org/10.1109/
                      EMBC.2014.6945077.
                    [91] A. Can, C.V. Stewart, B. Roysam, H.L. Tanenbaum, A feature-based technique for joint,
                      linear estimation of high-order image-to-mosaic transformations: mosaicing the curved
                      human retina, IEEE Trans. Pattern Anal. Mach. Intell. 24 (3) (2002) 412–419, https://
                      doi.org/10.1109/34.990145.
                    [92] N.  Ryan, C.  Heneghan, P.  de Chazal, Registration of digital retinal images using
                      landmark correspondence by expectation maximization, Image Vis. Comput. 22 (11)
                      (2004) 883–898, https://doi.org/10.1016/j.imavis.2004.04.004.
                    [93] P.C. Cattin, H. Bay, L. Van Gool, G. Székely, Retina mosaicing using local features,
                      Medical Image Computing and Computer-Assisted Intervention—MICCAI 2006: 9th
                      International Conference, Copenhagen, Denmark, October 1–6, 2006. Proceedings, Part
                      II, Springer, Berlin, Heidelberg, 2006, pp. 185–192.
                    [94] K.M.  Adal, P.G.  van Etten, J.P.  Martinez, L.J.  van  Vliet, K.A.  Vermeer,  Accuracy
                      assessment of intra- and intervisit fundus image registration for diabetic retinopathy
                      screening. Invest. Ophthalmol.  Vis. Sci. 56 (3) (2015) 1805–1812,  https://doi.
                      org/10.1167/iovs.14-15949.
   77   78   79   80   81   82   83   84   85   86   87