Page 82 - Computational Retinal Image Analysis
P. 82
References 73
tomography, Opt. Lett. 29 (7) (2004) 736–738, https://doi.org/10.1364/OL.29.000736.
[81] H. Ren, Z. Ding, Y. Zhao, J. Miao, J.S. Nelson, Z. Chen, Phase-resolved functional
optical coherence tomography: simultaneous imaging of in situ tissue structure,
blood flow velocity, standard deviation, birefringence, and Stokes vectors in human
skin, Opt. Lett. 27 (19) (2002) 1702–1704, https://doi.org/10.1364/OL.27.001702.
[82] M. Kobayashi, H. Hanafusa, K. Takada, J. Noda, Polarization-independent
interferometric optical-time-domain reflectometer, J. Lightwave Technol. 9 (5) (1991)
623–628.
[83] J. Schmitt, Array detection for speckle reduction in optical coherence microscopy, Phys.
Med. Biol. 42 (7) (1997) 1427.
[84] R.J. Zawadzki, B. Cense, Y. Zhang, S.S. Choi, D.T. Miller, J.S. Werner, Ultrahigh-
resolution optical coherence tomography with monochromatic and chromatic
aberration correction, Opt. Express 16 (11) (2008) 8126–8143, https://doi.org/10.1364/
OE.16.008126.
[85] Z. Jian, L. Yu, B. Rao, B. Tromberg, Z. Chen, Three-dimensional speckle suppression
in optical coherence tomography based on the curvelet transform, Opt. Express 18 (2)
(2010) 1024–1032.
[86] C. Gyger, R. Cattin, P. Hasler, P. Maloca, Three-dimensional speckle reduction in
optical coherence tomography through structural guided filtering, Opt. Eng. 53 (7)
(2014) 1024–1032.
[87] L. Bian, J. Suo, F. Chen, Q. Dai, Multiframe denoising of high-speed optical coherence
tomography data using interframe and intraframe priors, J. Biomed. Opt. 20 (2015)
36006.
[88] N. Meitav, E.N. Ribak, Improving retinal image resolution with iterative weighted
shift-and-add, J. Opt. Soc. Am. A 28 (7) (2011) 1395–1402, https://doi.org/10.1364/
JOSAA.28.001395.
[89] G. Molodij, E.N. Ribak, M. Glanc, G. Chenegros, Enhancing retinal images by extracting
structural information, Opt. Commun. 313 (2014) 321–328, https://doi.org/10.1016/j.
optcom.2013.10.011.
[90] C. Hernandez-Matas, X. Zabulis, Super resolution for fundoscopy based on 3D
image registration, 36th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, 2014, pp. 6332–6338, https://doi.org/10.1109/
EMBC.2014.6945077.
[91] A. Can, C.V. Stewart, B. Roysam, H.L. Tanenbaum, A feature-based technique for joint,
linear estimation of high-order image-to-mosaic transformations: mosaicing the curved
human retina, IEEE Trans. Pattern Anal. Mach. Intell. 24 (3) (2002) 412–419, https://
doi.org/10.1109/34.990145.
[92] N. Ryan, C. Heneghan, P. de Chazal, Registration of digital retinal images using
landmark correspondence by expectation maximization, Image Vis. Comput. 22 (11)
(2004) 883–898, https://doi.org/10.1016/j.imavis.2004.04.004.
[93] P.C. Cattin, H. Bay, L. Van Gool, G. Székely, Retina mosaicing using local features,
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2006: 9th
International Conference, Copenhagen, Denmark, October 1–6, 2006. Proceedings, Part
II, Springer, Berlin, Heidelberg, 2006, pp. 185–192.
[94] K.M. Adal, P.G. van Etten, J.P. Martinez, L.J. van Vliet, K.A. Vermeer, Accuracy
assessment of intra- and intervisit fundus image registration for diabetic retinopathy
screening. Invest. Ophthalmol. Vis. Sci. 56 (3) (2015) 1805–1812, https://doi.
org/10.1167/iovs.14-15949.