Page 85 - Computational Retinal Image Analysis
P. 85

76     CHAPTER 4  Retinal image preprocessing, enhancement, and registration




                             retinal image registration, Biomed. Signal Process. Control 19 (2015) 68–76, https://doi.
                             org/10.1016/j.bspc.2015.03.004.
                          [127] Z. Ghassabi, J. Shanbehzadeh, A. Mohammadzadeh, A structure-based region detector
                             for high-resolution retinal fundus image registration, Biomed. Signal Process. Control
                             23 (2016) 52–61, https://doi.org/10.1016/j.bspc.2015.08.005.
                          [128] C. Hernandez-Matas, X. Zabulis, A.A. Argyros, Retinal image registration based on
                             keypoint correspondences, spherical eye modeling and camera pose estimation, 37th
                             Annual International Conference of the IEEE Engineering in Medicine and Biology
                             Society (EMBC), 2015, pp. 5650–5654, https://doi.org/10.1109/EMBC.2015.7319674.
                          [129] C. Hernandez-Matas, X. Zabulis, A. Triantafyllou, P. Anyfanti, A.A. Argyros, Retinal
                             image registration under the assumption of a spherical  eye, Comput. Med. Imaging
                             Graph. 55 (2017) 95–105, https://doi.org/10.1016/j.compmedimag.2016.06.006.
                          [130] C.  Hernandez-Matas, X.  Zabulis, A.A.  Argyros, Retinal image registration through
                             simultaneous camera pose and eye shape estimation, 38th  Annual International
                             Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016,
                             pp. 3247–3251, https://doi.org/10.1109/EMBC.2016.7591421.
                          [131] C. Liu, J. Ma, Y. Ma, J. Huang, Retinal image registration via feature-guided Gaussian
                             mixture model, J. Opt. Soc. Am. A 33 (7) (2016) 1267–1276, https://doi.org/10.1364/
                             JOSAA.33.001267.
                          [132] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. Comput.
                             Vis. 60 (2) (2004) 91–110, https://doi.org/10.1023/B:VISI.0000029664.99615.94.
                           [133] H.  Bay,  A.  Ess,  T.  Tuytelaars, L.V.  Gool, Speeded-up robust features (SURF),
                             Comput.  Vis. Image Underst. 110 (3) (2008) 346–359,  https://doi.org/10.1016/j.
                             cviu.2007.09.014.
                           [134] C.  Hernandez-Matas, X.  Zabulis, A.A.  Argyros, An experimental evaluation of the
                             accuracy of keypoints-based retinal image registration, 39th  Annual International
                             Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017,
                             pp. 377–381.
                          [135] D.  Alonso-Caneiro, S.  Read, M.  Collins, Speckle reduction in optical coherence
                             tomography imaging by affine-motion image registration, J. Biomed. Opt. 16 (11)
                             (2011) 116027.
                          [136] A. Baghaie, R. D’Souza, Z. Yu, Sparse and low rank decomposition based batch image
                             alignment for speckle reduction of retinal OCT images, International Symposium on
                             Biomedical Imaging, 2015, pp. 226–230.
                          [137] M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, C. Hitzenberger, Simultaneous
                             SLO/OCT imaging of the human retina with axial eye motion correction, Opt. Express
                             15 (25) (2007) 16922–16932.
                          [138] S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, J. Schuman, Correcting motion artifacts
                             in retinal spectral domain optical coherence tomography via image registration, Med.
                             Image Comput. Comput. Assist. Interv. 12 (1) (2009) 100–107.
                          [139] J. Xu, H. Ishikawa, G. Wollstein, L. Kagemann, J. Schuman, Alignment of 3-D optical
                             coherence tomography scans to correct eye movement using a particle filtering, IEEE
                             Trans. Med. Imaging 31 (2012) 1337–1345.
                          [140] M. Kraus, J. Liu, J. Schottenhamml, C. Chen, A. Budai, L. Branchini, T. Ko, H. Ishikawa,
                             G. Wollstein, J. Schuman, J. Duker, J. Fujimoto, J. Hornegger, Quantitative 3D-OCT
                             motion correction with tilt and illumination correction, robust similarity measure and
                             regularization, Biomed. Opt. Express 5 (8) (2014) 2591–2613.
                          [141] M. Röhlig, C. Schmidt, R.K. Prakasam, P. Rosenthal, H. Schumann, O. Stachs, Visual
   80   81   82   83   84   85   86   87   88   89   90