Page 85 - Computational Retinal Image Analysis
P. 85
76 CHAPTER 4 Retinal image preprocessing, enhancement, and registration
retinal image registration, Biomed. Signal Process. Control 19 (2015) 68–76, https://doi.
org/10.1016/j.bspc.2015.03.004.
[127] Z. Ghassabi, J. Shanbehzadeh, A. Mohammadzadeh, A structure-based region detector
for high-resolution retinal fundus image registration, Biomed. Signal Process. Control
23 (2016) 52–61, https://doi.org/10.1016/j.bspc.2015.08.005.
[128] C. Hernandez-Matas, X. Zabulis, A.A. Argyros, Retinal image registration based on
keypoint correspondences, spherical eye modeling and camera pose estimation, 37th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), 2015, pp. 5650–5654, https://doi.org/10.1109/EMBC.2015.7319674.
[129] C. Hernandez-Matas, X. Zabulis, A. Triantafyllou, P. Anyfanti, A.A. Argyros, Retinal
image registration under the assumption of a spherical eye, Comput. Med. Imaging
Graph. 55 (2017) 95–105, https://doi.org/10.1016/j.compmedimag.2016.06.006.
[130] C. Hernandez-Matas, X. Zabulis, A.A. Argyros, Retinal image registration through
simultaneous camera pose and eye shape estimation, 38th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016,
pp. 3247–3251, https://doi.org/10.1109/EMBC.2016.7591421.
[131] C. Liu, J. Ma, Y. Ma, J. Huang, Retinal image registration via feature-guided Gaussian
mixture model, J. Opt. Soc. Am. A 33 (7) (2016) 1267–1276, https://doi.org/10.1364/
JOSAA.33.001267.
[132] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. Comput.
Vis. 60 (2) (2004) 91–110, https://doi.org/10.1023/B:VISI.0000029664.99615.94.
[133] H. Bay, A. Ess, T. Tuytelaars, L.V. Gool, Speeded-up robust features (SURF),
Comput. Vis. Image Underst. 110 (3) (2008) 346–359, https://doi.org/10.1016/j.
cviu.2007.09.014.
[134] C. Hernandez-Matas, X. Zabulis, A.A. Argyros, An experimental evaluation of the
accuracy of keypoints-based retinal image registration, 39th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017,
pp. 377–381.
[135] D. Alonso-Caneiro, S. Read, M. Collins, Speckle reduction in optical coherence
tomography imaging by affine-motion image registration, J. Biomed. Opt. 16 (11)
(2011) 116027.
[136] A. Baghaie, R. D’Souza, Z. Yu, Sparse and low rank decomposition based batch image
alignment for speckle reduction of retinal OCT images, International Symposium on
Biomedical Imaging, 2015, pp. 226–230.
[137] M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, C. Hitzenberger, Simultaneous
SLO/OCT imaging of the human retina with axial eye motion correction, Opt. Express
15 (25) (2007) 16922–16932.
[138] S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, J. Schuman, Correcting motion artifacts
in retinal spectral domain optical coherence tomography via image registration, Med.
Image Comput. Comput. Assist. Interv. 12 (1) (2009) 100–107.
[139] J. Xu, H. Ishikawa, G. Wollstein, L. Kagemann, J. Schuman, Alignment of 3-D optical
coherence tomography scans to correct eye movement using a particle filtering, IEEE
Trans. Med. Imaging 31 (2012) 1337–1345.
[140] M. Kraus, J. Liu, J. Schottenhamml, C. Chen, A. Budai, L. Branchini, T. Ko, H. Ishikawa,
G. Wollstein, J. Schuman, J. Duker, J. Fujimoto, J. Hornegger, Quantitative 3D-OCT
motion correction with tilt and illumination correction, robust similarity measure and
regularization, Biomed. Opt. Express 5 (8) (2014) 2591–2613.
[141] M. Röhlig, C. Schmidt, R.K. Prakasam, P. Rosenthal, H. Schumann, O. Stachs, Visual