Page 81 - Computational Retinal Image Analysis
P. 81
72 CHAPTER 4 Retinal image preprocessing, enhancement, and registration
2880, https://doi.org/10.1364/OL.29.002878.
[63] P. Puvanathasan, K. Bizheva, Speckle noise reduction algorithm for optical coherence
tomography based on interval type II fuzzy set. Opt. Express 15 (24) (2007) 15747–
15758, https://doi.org/10.1364/OE.15.015747.
[64] Y. Du, G. Liu, G. Feng, Z. Chen, Speckle reduction in optical coherence tomography
images based on wave atoms, J. Biomed. Opt. 19 (5) (2014) 1–7.
[65] H. Salinas, D. Fernandez, Comparison of PDE-based nonlinear diffusion approaches for
image enhancement and denoising in optical coherence tomography, IEEE Trans. Med.
Imaging 26 (6) (2007) 761–771.
[66] F. Zhang, Y. Yoo, L. Koh, Y. Kim, Nonlinear diffusion in Laplacian pyramid domain for
ultrasonic speckle reduction, IEEE Trans. Med. Imaging 26 (2007) 200–211.
[67] D. Marks, T. Ralston, S. Boppart, Speckle reduction by I-divergence regularization in
optical coherence tomography, J. Opt. Soc. Am. 22 (11) (2005) 2366–2371.
[68] H. Lv, S. Fu, C. Zhang, L. Zhai, Speckle noise reduction of multi-frame optical coherence
tomography data using multi-linear principal component analysis, Opt. Express 26 (9)
(2018) 11804–11818.
[69] A. Wong, A. Mishra, K. Bizheva, D. Clausi, General Bayesian estimation for speckle
noise reduction in optical coherence tomography retinal imagery, Opt. Express 18 (8)
(2010) 8338–8352.
[70] A. Cameron, D. Lui, A. Boroomand, J. Glaister, A. Wong, K. Bizheva, Stochastic speckle
noise compensation in optical coherence tomography using non-stationary spline-based
speckle noise modelling, Biomed. Opt. Express 4 (9) (2013) 1769–1785.
[71] L. Fang, S. Li, Q. Nie, J. Izatt, C. Toth, S. Farsiu, Sparsity based denoising of spectral
domain optical coherence tomography images, Biomed. Opt. Express 3 (5) (2012)
927–942.
[72] L. Fang, S. Li, R. McNabb, Q. Nie, A. Kuo, C. Toth, J. Izatt, S. Farsiu, Fast acquisition
and reconstruction of optical coherence tomography images via sparse representation,
IEEE Trans. Med. Imaging 32 (2013) 2034–2049.
[73] D. Thapa, K. Raahemifar, V. Lakshminarayanan, A new efficient dictionary and
its implementation on retinal images, International Conference on Digital Signal
Processing, 2014, pp. 841–846.
[74] A. Ozcan, A. Bilenca, A. Desjardins, B. Bouma, G. Tearney, Speckle reduction in
optical coherence tomography images using digital filtering, J. Opt. Soc. Am. 24 (7)
(2007) 1901–1910.
[75] N. Iftimia, B. Bouma, G. Tearney, Speckle reduction in optical coherence tomography
by “path length encoded” angular compounding, J. Biomed. Opt. 8 (2003) 260–263.
[76] H. Wang, A.M. Rollins, OCT speckle reduction with angular compounding by B-scan
Doppler-shift encoding, Proc. SPIE, 7168, 2009, https://doi.org/10.1117/12.809852.
[77] A. Desjardins, B. Vakoc, W. Oh, S. Motaghiannezam, G. Tearney, B. Bouma, Angle-
resolved optical coherence tomography with sequential angular selectivity for speckle
reduction, Opt. Express 15 (10) (2007) 6200–6209.
[78] M. Pircher, E. Götzinger, R. Leitgeb, A. Fercher, C. Hitzenberger, Speckle reduction in optical
coherence tomography by frequency compounding, J. Biomed. Opt. 8 (3) (2003) 565–569.
[79] J. Kim, D.T. Miller, E.K. Kim, S. Oh, J.H. Oh, T.E. Milner, Optical coherence
tomography speckle reduction by a partially spatially coherent source, J. Biomed. Opt.
10 (2005) 064034, https://doi.org/10.1117/1.2138031.
[80] B. Karamata, P. Lambelet, M. Laubscher, R.P. Salathé, T. Lasser, Spatially incoherent
illumination as a mechanism for cross-talk suppression in wide-field optical coherence