Page 80 - Computational Retinal Image Analysis
P. 80
References 71
image enhancement, World Congress on Medical Physics and Biomedical Engineering,
2013, pp. 900–903.
[47] L. Wang, G. Liu, S. Fu, L. Xu, K. Zhao, C. Zhang, Retinal image enhancement using
robust inverse diffusion equation and self-similarity filtering, PLoS ONE 11 (7) (2016)
1–13.
[48] B. Chen, Y. Chen, Z. Shao, T. Tong, L. Luo, Blood vessel enhancement via multi-
dictionary and sparse coding: Application to retinal vessel enhancing, Neurocomputing
200 (2016) 110–117.
[49] A. Marrugo, M. Millán, M. Sorel, J. Kotera, F. Sroubek, Improving the blind
restoration of retinal images by means of point-spread-function estimation assessment,
International Symposium on Medical Information Processing and Analysis, vol. 9287,
2015, p. 92871D.
[50] A. Hoover, V. Kouznetsova, M. Goldbaum, Locating blood vessels in retinal images by
piecewise threshold probing of a matched filter response, IEEE Trans. Med. Imaging 19
(3) (2000) 203–210.
[51] T. Lin, M. Du, J. Xu, The preprocessing of subtraction and the enhancement for
biomedical image of retinal blood vessels, J. Biomed. Eng. 1 (20) (2003) 56–59.
[52] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, M. Goldbaum, Detection of blood
vessels in retinal images using two-dimensional matched filters, IEEE Trans. Med.
Imaging 8 (3) (1989) 263–269.
[53] A.F. Frangi, W.J. Niessen, K.L. Vincken, M.A. Viergever, Multiscale vessel enhancement
filtering, Medical Image Computing and Computer-Assisted Intervention—MICCAI’98:
First International Conference Cambridge, MA, USA, October 11–13, 1998 Proceedings,
Springer, Berlin, Heidelberg, 1998, pp. 130–137, https://doi.org/10.1007/BFb0056195.
[54] S. Crespo-Garcia, N. Reichhart, C. Hernandez-Matas, X. Zabulis, N. Kociok,
C. Brockmann, A. Joussen, O. Strauss, In-vivo analysis of the time and spatial activation
pattern of microglia in the retina following laser-induced choroidal neovascularization,
Exp. Eye Res. 139 (2015) 13–21.
[55] A. Marrugo, M. Millan, M. Sorel, F. Sroubek, Retinal image restoration by means of
blind deconvolution, J. Biomed. Opt. 16 (11) (2011) 1–16.
[56] J. Schmitt, A. Knüttel, Model of optical coherence tomography of heterogeneous tissue,
J. Opt. Soc. Am. A 14 (6) (1997) 1231–1242.
[57] M. Pircher, E. Götzinger, R. Leitgeb, A. Fercher, C. Hitzenberger, Measurement and
imaging of water concentration in human cornea with differential absorption optical
coherence tomography, Opt. Express 11 (18) (2003) 2190–2197.
[58] J. Rogowska, M. Brezinski, Evaluation of the adaptive speckle suppression filter for
coronary optical coherence tomography imaging, IEEE Trans. Med. Imaging 19 (12)
(2000) 1261–1266.
[59] Z. Jian, Z. Yu, L. Yu, B. Rao, Z. Chen, B. Tromberg, Speckle attenuation in optical
coherence tomography by curvelet shrinkage, Opt. Lett. 34 (10) (2009) 1516–1518.
[60] S. Chitchian, M.A. Mayer, A.R. Boretsky, F.J. van Kuijk, M. Motamedi, Retinal optical
coherence tomography image enhancement via shrinkage denoising using double-
density dual-tree complex wavelet transform, J. Biomed. Opt. 17 (11) (2012) 116009.
[61] Q. Guo, F. Dong, S. Sun, B. Lei, B. Gao, Image denoising algorithm based on contourlet
transform for optical coherence tomography heart tube image, IET Image Process. 7 (5)
(2013) 442–450.
[62] D.C. Adler, T.H. Ko, J.G. Fujimoto, Speckle reduction in optical coherence tomography
images by use of a spatially adaptive wavelet filter, Opt. Lett. 29 (24) (2004) 2878–