Page 83 - Computational Retinal Image Analysis
P. 83
74 CHAPTER 4 Retinal image preprocessing, enhancement, and registration
[95] RODREP: Rotterdam ophthalmic data repository longitudinal diabetic retinopathy
screening data, Available from: http://www.rodrep.com/longitudinal-diabetic-
retinopathy-screening--description.html (Accessed 25 May 2017).
[96] C. Hernandez-Matas, Retinal Image Registration Through 3D Eye Modelling and Pose
Estimation (Ph.D. thesis), University of Crete, 2017.
[97] H. Narasimha-Iyer, A. Can, B. Roysam, H.L. Tanenbaum, A. Majerovics, Integrated
analysis of vascular and nonvascular changes from color retinal fundus image
sequences, IEEE Trans. Biomed. Eng. 54 (8) (2007) 1436–1445, https://doi.org/10.1109/
TBME.2007.900807.
[98] G. Troglio, J.A. Benediktsson, G. Moser, S.B. Serpico, E. Stefansson, Unsupervised
change detection in multitemporal images of the human retina, Multi Modality State-of-
the-Art Medical Image Segmentation and Registration Methodologies, vol. 1, Springer
US, Boston, MA, 2011, pp. 309–337.
[99] C. Hernandez-Matas, X. Zabulis, A. Triantafyllou, P. Anyfanti, S. Douma, A.A. Argyros,
FIRE: fundus image registration dataset, J. Model. Ophthalmol. 1 (4) (2017) 16–28.
[100] FIRE: fundus image registration dataset, Available from: http://www.ics.forth.gr/cvrl/
fire (Accessed 18 May 2019).
[101] P.S. Reel, L.S. Dooley, K.C.P. Wong, A. Börner, Robust retinal image registration using
expectation maximisation with mutual information, IEEE International Conference on
Acoustics, Speech and Signal Processing, 2013, pp. 1118–1122, https://doi.org/10.1109/
ICASSP.2013.6637824.
[102] P.A. Legg, P.L. Rosin, D. Marshall, J.E. Morgan, Improving accuracy and efficiency of
mutual information for multi-modal retinal image registration using adaptive probability
density estimation, Comput. Med. Imaging Graph. 37 (7–8) (2013) 597–606, https://doi.
org/10.1016/j.compmedimag.2013.08.004.
[103] E. Peli, R.A. Augliere, G.T. Timberlake, Feature-based registration of retinal
images, IEEE Trans. Med. Imaging 6 (3) (1987) 272–278, https://doi.org/10.1109/
TMI.1987.4307837.
[104] K.M. Adal, R.M. Ensing, R. Couvert, P. van Etten, J.P. Martinez, K.A. Vermeer, L.J. van
Vliet, A hierarchical coarse-to-fine approach for fundus image registration, Biomedical
Image Registration. WBIR 2014. Lecture Notes in Computer Science, 8545, 2014, pp.
93–102.
[105] J. Noack, D. Sutton, An algorithm for the fast registration of image sequences obtained
with a scanning laser ophthalmoscope, Phys. Med. Biol. 39 (5) (1994) 907.
[106] A. Wade, F. Fitzke, A fast, robust pattern recognition system for low light level image
registration and its application to retinal imaging, Opt. Express 3 (5) (1998) 190–197.
[107] A.V. Cideciyan, S.G. Jacobson, C.M. Kemp, R.W. Knighton, J.H. Nagel, Registration of
high resolution images of the retina, SPIE Med. Imaging 1652 (1992) 310–322, https://
doi.org/10.1117/12.59439.
[108] Z. Li, F. Huang, J. Zhang, B. Dashtbozorg, S. Abbasi-Sureshjani, Y. Sun, X. Long, Q. Yu,
B. ter Haar Romeny, T. Tan, Multi-modal and multi-vendor retina image registration,
Biomed. Opt. Express 9 (2) (2018) 410–422.
[109] Y. Lin, G. Medioni, Retinal image registration from 2D to 3D, IEEE Conference on
Computer Vision and Pattern Recognition, 2008, pp. 1–8, https://doi.org/10.1109/
CVPR.2008.4587705.
[110] J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, M. Xu, Salient feature region: a new
method for retinal image registration, IEEE Trans. Inf. Technol. Biomed. 15 (2) (2011)
221–232, https://doi.org/10.1109/TITB.2010.2091145.