Page 78 - Computational Retinal Image Analysis
P. 78

References   69




                      retinal vessel segmentation via locally adaptive derivative frames in orientation scores,
                      IEEE Trans. Med. Imaging 35 (12) (2016) 2631–2644.
                    [13] J. Sivaswamy, A. Agarwal, M. Chawla, A. Rani, T. Das, Extraction of capillary non-
                      perfusion from fundus fluorescein angiogram, A. Fred, J. Filipe, H. Gamboa (Eds.),
                      Biomedical Engineering Systems and Technologies, Springer, Berlin, Heidelberg, 2009,
                      pp. 176–188.
                    [14] Y. Zhao, Y. Liu, X. Wu, S. Harding, Y. Zheng, Retinal vessel segmentation: an efficient
                      graph cut approach with Retinex and local phase, PLoS ONE 10 (4) (2015) 1–22.
                    [15] K. Zuiderveld, Contrast limited adaptive histogram equalization, Graphics Gems IV,
                      Academic Press, San Diego, CA, 1994, pp. 474–485.
                    [16] G.  Manikis, V.  Sakkalis, X.  Zabulis, P.  Karamaounas, A.  Triantafyllou, S.  Douma,
                      C. Zamboulis, K. Marias, An image analysis framework for the early assessment of
                      hypertensive retinopathy signs, IEEE E-Health and Bioengineering Conference, 2011,
                      pp. 1–6.
                    [17] U. Acharya, E. Ng, J. Tan, V. Sree, K. Ng, An integrated index for the identification
                      of diabetic retinopathy stages using texture parameters, J. Med. Syst. 36 (3) (2012)
                      2011–2020.
                    [18] M. Zhou, K. Jin, S. Wang, J. Ye, D. Qian, Color retinal image enhancement based on
                      luminosity and contrast adjustment, IEEE Trans. Biomed. Eng. 65 (3) (2018) 521–527.
                    [19] Sonali, S. Sahu, A. Singh, S. Ghrera, M. Elhoseny, An approach for de-noising and
                      contrast enhancement of retinal fundus image using CLAHE, Opt. Laser Technol. 110
                      (2019) 87–98.
                    [20] A. Ajaz, B. Aliahmad, D. Kumar, A novel method for segmentation of infrared scanning
                      laser ophthalmoscope (IR-SLO) images of retina, IEEE Engineering in Medicine and
                      Biology Society, 2017, pp. 356–359.
                    [21] M.  Esmaeili, H.  Rabbani, A.M.  Dehnavi, Automatic optic disk boundary extraction
                      by the use of curvelet transform and deformable variational level set model, Pattern
                      Recogn. 45 (7) (2012) 2832–2842, https://doi.org/10.1016/j.patcog.2012.01.002.
                    [22] A.  Sopharak,  B.  Uyyanonvara,  S.  Barman,  T.  Williamson,  Automatic  detection  of
                      diabetic retinopathy exudates from non-dilated retinal images using mathematical
                      morphology methods, Comput. Med. Imaging Graph. 32 (2008) 720–727.
                    [23] S.M. Shankaranarayana, K. Ram, A. Vinekar, K. Mitra, M. Sivaprakasam, Restoration
                      of neonatal retinal images, Proceedings of the Ophthalmic Medical Image Analysis
                      Third International Workshop, OMIA, 2016, pp. 49–56.
                    [24] A.  Aibinu, M.  Iqbal, M.  Nilsson, M.  Salami, A new method of correcting uneven
                      illumination problem in fundus images, International Conference on Robotics, Vision,
                      Information, and Signal Processing, 2007, pp. 445–449.
                    [25] K. Huang, M. Yan, A local adaptive algorithm for microaneurysms detection in digital
                      fundus  images, Computer  Vision  for  Biomedical  Image  Applications,  2005, pp.
                      103–113.
                    [26] R. GeethaRamani, L. Balasubramanian, Retinal blood vessel segmentation employing
                      image processing and data mining techniques for computerized retinal image analysis.
                      Retinal blood vessel segmentation in fundus images, Biocybern. Biomed. Eng. 36 (1)
                      (2016) 102–118.
                    [27] M. Foracchia, E. Grisan, A. Ruggeri, Luminosity and contrast normalization in retinal
                      images, Med. Image Anal. 9 (3) (2005) 179–190.
                    [28] H. Narasimha-Iyer, A. Can, B. Roysam, V. Stewart, H.L. Tanenbaum, A. Majerovics,
                      H. Singh, Robust detection and classification of longitudinal changes in color retinal
   73   74   75   76   77   78   79   80   81   82   83