Page 213 - Control Theory in Biomedical Engineering
P. 213
194 Control theory in biomedical engineering
®
Barrett, A.R.W., et al., 2007. Computer-assisted hip resurfacing surgery using the Acrobot
navigation system. Proc. Inst. Mech. Eng. H J. Eng. Med. https://doi.org/
10.1243/09544119JEIM283.
Beasley, R.A., 2012. Medical robots: current systems and research directions. J. Robot.
2012, 1–14. https://doi.org/10.1155/2012/401613.
Benrejeb, W., Boubaker, O., 2012. FPGA modelling and real-time embedded control design
via labview software: application for swinging-up a pendulum. Int. J. Smart Sens. Intell.
Syst. 5 (3), 576–591. https://doi.org/10.21307/ijssis-2017-496.
Berthet-Rayne, P., et al., 2018. The i2Snake robotic platform for endoscopic surgery. Ann.
Biomed. Eng. 46 (10), 1663–1675. https://doi.org/10.1007/s10439-018-2066-y.
Bodner, J., et al., 2005. The da Vinci robotic system for general surgical applications: a critical
interim appraisal. Swiss Med. Wkly. doi: 2005/45/smw-11022.
Bogue, R., 2011. Robots in healthcare. Ind. Robot. 38 (3), 218–223. https://doi.org/
10.1108/01439911111122699.
Borboni, A., Mor, M., Faglia, R., 2016. Gloreha-hand robotic rehabilitation: design,
mechanical model, and experiments. J. Dyn. Syst. Trans. ASME. https://doi.org/
10.1115/1.4033831.
Boubaker, O., 2012. The inverted pendulum: a fundamental benchmark in control theory
and robotics. In: 2012 International Conference on Education and e-Learning Innova-
tions, ICEELI 2012. https://doi.org/10.1109/ICEELI.2012.6360606.
Boubaker, O., 2013. The inverted pendulum benchmark in nonlinear control theory: a sur-
vey. Int. J. Adv. Robot. Syst. https://doi.org/10.5772/55058.
Boubaker, O., 2017. The inverted pendulum: history and survey of open and current
problems in control theory and robotics. In: The Inverted Pendulum in Control
Theory and Robotics: From Theory to New Innovations. https://doi.org/10.1049/
pbce111e_ch1.
Boubaker, O., Iriarte, R. (Eds.), (2017). The Inverted Pendulum in Control Theory and
Robotics: From theory to new innovations. Institution of Engineering and Technology.
https://doi.org/10.1049/PBCE111E.
Brewer, B.R., McDowell, S.K., Worthen-Chaudhari, L.C., 2007. Poststroke upper extrem-
ity rehabilitation: a review of robotic systems and clinical results. Top. Stroke Rehabil.
14 (6), 22–44. https://doi.org/10.1310/tsr1406-22.
Broadbent, E., Stafford, R., MacDonald, B., 2009. Acceptance of healthcare robots for the
older population: review and future directions. Int. J. Soc. Robot. 1 (4), 319–330.
https://doi.org/10.1007/s12369-009-0030-6.
Brochard, S., et al., 2010. What’s new in new technologies for upper extremity rehabilita-
tion? Curr. Opin. Neurol. 23 (6), 683–687. https://doi.org/10.1097/WCO.0b013e3
2833f61ce.
Burgar, C.G., et al., 2000. Development of robots for rehabilitation therapy: the Palo Alto
VA/Stanford experience. J. Rehabil. Res. Dev. 37 (6), 663–673.
Burgner-Kahrs, J., Rucker, D.C., Choset, H., 2015. Continuum robots for medical appli-
cations: a survey. IEEE Trans. Robot. 31 (6), 1261–1280. https://doi.org/10.1109/
TRO.2015.2489500.
Butcher, C., Meals, R.A., 2002. Rehabilitation of the hand and upper extremity. J. Hand.
Surg. [Am.] 27 (5), 919. https://doi.org/10.1053/jhsu.2002.35304.
Camarillo, D.B., Krummel, T.M., Salisbury, J.K., 2004. Robotic technology in surgery: past,
present, and future. Am. J. Surg. 188 (4), 2–15. https://doi.org/10.1016/j.
amjsurg.2004.08.025.
Carpino, G., et al., 2013. Lower limb wearable robots for physiological gait restoration: state
of the art and motivations. Medic 21 (2), 72–80.
Caversaccio, M., et al., 2008. Augmented reality endoscopic system (ARES): preliminary
results. Rhinology 46, 156–158.