Page 216 - Control Theory in Biomedical Engineering
P. 216
Medical robotics 197
George, E.I., et al., 2018. Origins of robotic surgery: from skepticism to standard of care.
J. Soc. Laparoend. Surg. https://doi.org/10.4293/JSLS.2018.00039.
Gifari, M.W., et al., 2019. A review on recent advances in soft surgical robots for endoscopic
applications. Int. J. Med. Robot. 15(5). https://doi.org/10.1002/rcs.2010.
Gomes, P., 2011. Surgical robotics: reviewing the past, analysing the present, imagining the
future. Robot. Comput. Integr. Manuf. 27 (2), 261–266. https://doi.org/10.1016/j.
rcim.2010.06.009.
Gomes, P., 2012. Medical Robotics, Medical Robotics: Minimally Invasive Surgery. Wood-
head Publishing Limited. https://doi.org/10.1533/9780857097392.
Gonzales, A.V., et al., 2001. TER: a system for robotic tele-echography. In: Lecture Notes in
Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics). https://doi.org/10.1007/3-540-45468-3_39.
Gopura, R.A.R.C., Kiguchi, K., Bandara, D.S.V., 2011. A brief review on upper extremity
robotic exoskeleton systems. In: 2011 6th International Conference on Industrial
and Information Systems. IEEE, pp. 346–351. https://doi.org/10.1109/
ICIINFS.2011.6038092.
Gourdon, A., et al., 1999a. A tele-scanning robotic system using satellite communication.
In: Proceedings European Medical & Biological Engineering Conference “EMBEC,”
Vienna.
Gourdon, A., et al., 1999b. New robotic mechanism for medical application. In: IEEE/
ASME International Conference on Advanced Intelligent Mechatronics, AIM.
https://doi.org/10.1109/aim.1999.803139.
®
Graf, B., Parlitz, C., H€agele, M., 2009. Robotic home assistant care-o-bot 3 product vision
and innovation platform. In: Lecture Notes in Computer Science (including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://
doi.org/10.1007/978-3-642-02577-8_34.
Guo, S., et al., 2019. A novel robot-assisted endovascular catheterization system with haptic
force feedback. IEEE Trans. Robot. 35 (3), 685–696. https://doi.org/10.1109/
TRO.2019.2896763.
Haidegger, T., et al., 2009. Force sensing and force control for surgical robots. In: IFAC Pro-
ceedings Volumes (IFAC-PapersOnline). https://doi.org/10.3182/20090812-3-DK-
2006.0035.
Hakim, R.M., Tunis, B.G., Ross, M.D., 2017. Rehabilitation robotics for the upper extrem-
ity: review with new directions for orthopaedic disorders. Disabil. Rehabil. Assist. Tech-
nol. 12 (8), 765–771. https://doi.org/10.1080/17483107.2016.1269211.
Halamek, L.P., et al., 2000. Time for a new paradigm in pediatric medical education: teach-
ing neonatal resuscitation in a simulated delivery room environment. Pediatrics 106 (4),
E45.
Heo, P., et al., 2012. Current hand exoskeleton technologies for rehabilitation and assistive
engineering. Int. J. Precis. Eng. Manuf. 13 (5), 807–824. https://doi.org/10.1007/
s12541-012-0107-2.
Hesse, S., et al., 2003. Upper and lower extremity robotic devices for rehabilitation and for
studying motor control. Curr. Opin. Neurol. 16 (6), 705–710. https://doi.org/
10.1097/00019052-200312000-00010.
Hillman, M.R., 2006. Assistive robotics. In: Wiley Encyclopedia of Biomedical Engineering.
John Wiley & Sons, Inc., Hoboken, NJ, USA. https://doi.org/10.1002/9780471
740360.ebs1029
Hockstein, N.G., et al., 2007. A history of robots: from science fiction to surgical robotics.
J. Robot. Surg. https://doi.org/10.1007/s11701-007-0021-2.
Hogan, N., 1985a. Impedance control—an approach to manipulation. I—theory. II—
implementation. III—applications. ASME Trans. J. Dyn. Syst. Meas. Control B 107,
304–313.