Page 221 - Control Theory in Biomedical Engineering
P. 221
202 Control theory in biomedical engineering
Rupal, B.S., et al., 2017. Lower-limb exoskeletons: research trends and regulatory guidelines
in medical and non-medical applications. Int. J. Adv. Robot. Syst. https://doi.org/
10.1177/1729881417743554.
Salcudean, S.E., et al., 1999. Robot-assisted diagnostic ultrasound—design and feasibility
experiments. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/
10.1007/10704282_115.
Sale, P., Lombardi, V., Franceschini, M., 2012. Hand robotics rehabilitation: feasibility and
preliminary results of a robotic treatment in patients with hemiparesis. Stroke Res. Treat.
https://doi.org/10.1155/2012/820931.
Schweikard, A., Ernst, F., 2015. Medical Robotics. Springer International Publishing,
Cham. https://doi.org/10.1007/978-3-319-22891-4.
Segil, J., 2019. Handbook of Biomechatronics. Elsevier. https://doi.org/10.1016/C2016-0-
02397-5.
Shah, J., Vyas, A., Vyas, D., 2015. The history of robotics in surgical specialties. Am. J.
Robot. Surg.. https://doi.org/10.1166/ajrs.2014.1006.
Shi, C., et al., 2017. Shape sensing techniques for continuum robots in minimally invasive
surgery: a survey. IEEE Trans. Biomed. Eng. 64 (8), 1665–1678. https://doi.org/
10.1109/TBME.2016.2622361.
Shi, D., et al., 2019. A review on lower limb rehabilitation exoskeleton robots. Chin. J.
Mech. Eng. 32 (1), 74. https://doi.org/10.1186/s10033-019-0389-8.
®
Shin, H.J., et al., 2020. Robotic single-port surgery using the da Vinci SP surgical system for
benign gynecologic disease: a preliminary report. Taiwan. J. Obstet. Gynecol. 59 (2),
243–247. https://doi.org/10.1016/j.tjog.2020.01.012.
Shishehgar, M., Kerr, D., Blake, J., 2018. A systematic review of research into how robotic
technology can help older people. Smart Health. https://doi.org/10.1016/j.smhl.
2018.03.002.
Simaan, N., Yasin, R.M., Wang, L., 2018. Medical technologies and challenges of robot-
assisted minimally invasive intervention and diagnostics. Annu. Rev. Control Robot.
Auton. Syst. 1 (1), 465–490. https://doi.org/10.1146/annurev-control-060117-104956.
Smith, S., et al., 2014. A robotic system to simulate child birth design and development of the
pneumatic artificial muscle (PAM) birthing simulator. In: 2014 13th International Con-
ference on Control Automation Robotics and Vision, ICARCV 2014. https://doi.org/
10.1109/ICARCV.2014.7064499.
Speich, J., Rosen, J., 2008. Medical robotics. In: Encyclopedia of Biomaterials and Biomed-
ical Engineering. second ed. Four Volume Set. CRC Press, pp. 1804–1815. https://doi.
org/10.1201/b18990-174.
Spinelli, A., et al., 2018. First experience in colorectal surgery with a new robotic platform
with haptic feedback. Color. Dis. 20 (3), 228–235. https://doi.org/10.1111/codi.
13882.
Stefanov, D.H., Bien, Z., Bang, W.-C., 2004. The smart house for older persons and persons
with physical disabilities: structure, technology arrangements, and perspectives. IEEE
Trans. Neural Syst. Rehabil. Eng. 12 (2), 228–250. https://doi.org/10.1109/TNSRE.
2004.828423.
Takeoka, T., et al., 2017. Assessment potential of a new suture simulator in laparoscopic sur-
gical skills training. Minim. Invasive Ther. Allied Technol. 26 (6), 338–345. https://doi.
org/10.1080/13645706.2017.1312456.
Tapus, A., Mataric, M., Scassellati, B., 2007. Socially assistive robotics [grand challenges of
robotics]. IEEE Robot. Autom. Mag. 14 (1), 35–42. https://doi.org/10.1109/
MRA.2007.339605.
Taylor, R.H., 1997. Robots as surgical assistants: where we are, wither we are tending, and
how to get there. In: Lecture Notes in Computer Science (Including Subseries Lecture