Page 219 - Control Theory in Biomedical Engineering
P. 219
200 Control theory in biomedical engineering
Intelligent Systems Design and Applications, ISDA. https://doi.org/10.1109/
ISDA.2011.6121653.
Mehdi, H., Boubaker, O., 2012a. Robot-assisted therapy: design, control and optimization.
Int. J. Smart Sens. Intell. Syst. https://doi.org/10.21307/ijssis-2017-522.
Mehdi, H., Boubaker, O., 2012b. Robust tracking control for constrained robots. Procedia
Eng. https://doi.org/10.1016/j.proeng.2012.07.313.
Mehdi, H., Boubaker, O., 2012c. Stiffness and impedance control using Lyapunov theory for
robot-aided rehabilitation. Int. J. Soc. Robot. 4 (S1), 107–119. https://doi.org/
10.1007/s12369-011-0128-5.
Mehdi, H., Boubaker, O., 2013. Robust stiffness control for constrained robots under model
uncertainties. In: 2013 International Conference on Electrical Engineering and Software
Applications, ICEESA 2013. https://doi.org/10.1109/ICEESA.2013.6578388.
Mehdi, H., Boubaker, O., 2015. Robust impedance control-based Lyapunov-
Hamiltonian approach for constrained robots. Int. J. Adv. Robot. Syst. 1. https://
doi.org/10.5772/61992.
Mehdi, H., Boubaker, O., 2016. PSO-Lyapunov motion/force control of robot arms
with model uncertainties. Robotica 34 (3), 634–651. https://doi.org/10.1017/
S0263574714001775.
Meng, Q., et al., 2017. A survey on sEMG control strategies of wearable hand exoskeleton for
rehabilitation. In: 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems
(ACIRS). IEEE, pp. 165–169. https://doi.org/10.1109/ACIRS.2017.7986086.
Miller, D.P., 1998. Assistive robotics: an overview. In: Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bio-
informatics). https://doi.org/10.1007/bfb0055975.
Mobayen, S., Boubaker, O., Fekih, A., 2019. Design of observer-based tracking controller
for robotic manipulators. In: New Trends in Observer-Based Control. https://doi.org/
10.1016/b978-0-12-817034-2.00020-4.
Mohammed, S., Amirat, Y., 2009. Towards intelligent lower limb wearable robots: chal-
lenges and perspectives—state of the art. In: 2008 IEEE International Conference on.
Robotics and Biomimetics, ROBIO 2008, pp. 312–317. https://doi.org/10.1109/
ROBIO.2009.4913022.
Mohammed, S., Amirat, Y., Rifai, H., 2012. Lower-limb movement assistance through
wearable robots: state of the art and challenges. Adv. Robot. 26, 1–22. https://doi.
org/10.1163/016918611X607356.
Mohammed, S., et al., 2017. Special issue on assistive and rehabilitation robotics. Auton.
Robot. 41 (3), 513–517. https://doi.org/10.1007/s10514-017-9627-z.
Moreno, J.C., Figueiredo, J., Pons, J.L., 2018. Exoskeletons for lower-limb rehabilitation.
In: Rehabilitation Robotics. pp. 89–99. https://doi.org/10.1016/B978-0-12-811995-2.
00008-4.
Morgia, G., De Renzis, C., 2009. CyberKnife in the treatment of prostate cancer: a
revolutionary system. Eur. Urol. 56 (1), 40–42. https://doi.org/10.1016/j.eururo.
2009.02.020.
Nadas, I., et al., 2017. Considerations for designing robotic upper limb rehabilitation devices.
In: AIP Conference Proceedings. p. 030005. https://doi.org/10.1063/1.5018278.
Najarian, S., Fallahnezhad, M., Afshari, E., 2011. Advances in medical robotic systems with
specific applications in surgery—a review. J. Med. Eng. Technol. https://doi.org/
10.3109/03091902.2010.535593.
Nakadate, R., Hashizume, M., 2018. Intelligent information-guided robotic surgery.
In: Recent Advances in Laparoscopic Surgery. Intech Open https://doi.org/10.5772/
intechopen.82191 Working Title.
Ni, Z., 2015. Survey on medical robotics. J. Mech. Eng. 51 (13), 45. https://doi.org/
10.3901/JME.2015.13.045.