Page 220 - Control Theory in Biomedical Engineering
P. 220
Medical robotics 201
Okamura, A., Mataric, M., Christensen, H., 2010. Medical and health-care robotics. IEEE
Robot. Autom. Mag. 17 (3), 26–37. https://doi.org/10.1109/MRA.2010.937861.
Okamura, A.M., et al., 2011. Force feedback and sensory substitution for robot-assisted sur-
gery. In: Surgical Robotics. Boston, MA, Springer US, pp. 419–448. https://doi.org/
10.1007/978-1-4419-1126-1_18.
Pamungkas, D.S., et al., 2019. Overview: types of lower limb exoskeletons. Electronics
(Switzerland). https://doi.org/10.3390/electronics8111283.
Payne, C.J., Yang, G.-Z., 2014. Hand-held medical robots. Ann. Biomed. Eng. 42 (8),
1594–1605. https://doi.org/10.1007/s10439-014-1042-4.
Peters, B.S., et al., 2018. Review of emerging surgical robotic technology. Surg. Endosc.
32 (4), 1636–1655. https://doi.org/10.1007/s00464-018-6079-2.
Pierrot, F., et al., 1999. Hippocrate: a safe robot arm for medical applications with force feed-
back. Med. Image Anal. 3 (3), 285–300. https://doi.org/10.1016/S1361-8415(99)
80025-5.
Pignolo, L., 2009. Robotics in neuro-rehabilitation. J. Rehabil. Med. https://doi.org/
10.2340/16501977-0434.
Pitkin, M., 2015. Prosthetic restoration and rehabilitation of the upper and lower extremity.
Prosthetics Orthot. Int. https://doi.org/10.1177/0309364614537109.
Platz, T., et al., 2017. A survey on robotic devices for upper limb rehabilitation. Nervenarzt
74 (10), 841–849. https://doi.org/10.1007/s00115-003-1549-7.
Poli, P., et al., 2013. Robotic technologies and rehabilitation: new tools for stroke patients
therapy. Biomed. Res. Int. 2013, 1–8. https://doi.org/10.1155/2013/153872.
Pons, J.L., 2008. Pons, J.L. (Ed.), Wearable Robots: Biomechatronic Exoskeletons. John
Wiley & Sons, Ltd., Chichester, UK. https://doi.org/10.1002/9780470987667
Pons, J.L., 2010. Rehabilitation exoskeletal robotics. IEEE Eng. Med. Biol. Mag. https://
doi.org/10.1109/MEMB.2010.936548.
Poorten, E., Vander, B., Demeester, E., Lammertse, P., 2012. Haptic feedback for medical
applications, a survey. In: Actuator.
Popovi c, D.B., 2014. Advances in functional electrical stimulation (FES). J. Electromyogr.
Kinesiol. 24 (6), 795–802. https://doi.org/10.1016/j.jelekin.2014.09.008.
Preising, B., Hsia, T.C., Mittelstadt, B., 1991. A literature review: robots in medicine. IEEE
Eng. Med. Biol. Mag. 10 (2), 13–22. https://doi.org/10.1109/51.82001.
Puangmali, P., et al., 2008. State-of-the-art in force and tactile sensing for minimally
invasive surgery. IEEE Sensors J. 8 (4), 371–381. https://doi.org/10.1109/JSEN.2008.
917481.
®
Pugin, F., Bucher, P., Morel, P., 2011. History of robotic surgery: from AESOP and
® ®
ZEUS to da Vinci . J. Visc. Surg. https://doi.org/10.1016/j.jviscsurg.2011.04.007.
Qian, Z., Bi, Z., 2015. Recent development of rehabilitation robots. Adv. Mech. Eng. 7 (2),
563062. https://doi.org/10.1155/2014/563062.
Rassweiler, J., et al., 2001. Telesurgical laparoscopic radical prostatectomy: initial experience.
Eur. Urol. https://doi.org/10.1159/000049752.
Rodrı ´guez-Prunotto, L., et al., 2014. Upper limb robotic devices in rehabilitation for
neurological disease. Rehabilitacion 48 (2), 104–128. https://doi.org/10.1016/
j.rh.2014.01.001.
Rosen, J., Hannaford, B., Satava, R.M., 2011. Surgical Robotics: Systems Applications
and Visions. In: Rosen, J., Hannaford, B., Satava, R.M. (Eds.), Springer US, Boston, MA.
https://doi.org/10.1007/978-1-4419-1126-1.
Ruiz-Olaya, A.F., Lopez-Delis, A., da Rocha, A.F., 2019. Upper and lower extremity exo-
skeletons. In: Handbook of Biomechatronics. Elsevier, pp. 283–317. https://doi.org/
10.1016/B978-0-12-812539-7.00011-8.
Runciman, M., Darzi, A., Mylonas, G.P., 2019. Soft robotics in minimally invasive surgery.
Soft Rob. 6 (4), 423–443. https://doi.org/10.1089/soro.2018.0136.