Page 223 - Control Theory in Biomedical Engineering
P. 223

204   Control theory in biomedical engineering


          Walsh, C.J., et al., 2008. A patient-mounted, telerobotic tool for CT-guided percutaneous
             interventions. J. Med. Devices 2(1). https://doi.org/10.1115/1.2902854.
          Wang, Q., Chen, W., Markopoulos, P., 2014. Literature review on wearable systems in
             upper extremity rehabilitation. In: 2014 IEEE-EMBS International Conference on Bio-
             medical and Health Informatics, BHI. https://doi.org/10.1109/BHI.2014.6864424.
          Wang, Q., et al., 2017. Interactive wearable systems for upper body rehabilitation: a system-
             atic review. J. NeuroEng. Rehabil. https://doi.org/10.1186/s12984-017-0229-y.
          Witte, K.A., Collins, S.H., 2020. Design of lower-limb exoskeletons and emulator systems.
             In: Wearable Robotics. Elsevier, pp. 251–274. https://doi.org/10.1016/B978-0-12-
             814659-0.00013-8.
          Wolf, A., Shoham, M., 2009. Medical automation and robotics. In: Springer Handbook of
             Automation. Springer, Berlin, Heidelberg, pp. 1397–1407. https://doi.org/10.1007/
             978-3-540-78831-7_78.
          Xie, S., 2016. Advanced robotics for medical rehabilitation. In: Advanced Robotics for
             Medical Rehabilitation. Springer International Publishing, Cham. https://doi.org/
             10.1007/978-3-319-19896-5 Springer Tracts in Advanced Robotics.
          Yan, T., et al., 2015. Review of assistive strategies in powered lower-limb orthoses and
             exoskeletons. Robot. Auton. Syst. https://doi.org/10.1016/j.robot.2014.09.032.
          Yang, G.-Z., et al., 2017a. Medical robotics—regulatory, ethical, and legal considerations for
             increasing levels of autonomy. Sci. Robot. 2(4), eaam8638. https://doi.org/10.1126/
             scirobotics.aam8638.
          Yang, X., et al., 2017b. State of the art: bipedal robots for lower limb rehabilitation. Appl. Sci.
             7 (11), 1182. https://doi.org/10.3390/app7111182.
          Yang, C., et al., 2018. ‘Force modeling, identification, and feedback control of robot-assisted
             needle insertion: a survey of the literature. Sensors 18 (2), 561. https://doi.org/10.3390/
             s18020561.
          Yasin, H., et al., 2019. Experience with 102 frameless stereotactic biopsies using the neuro-
             mate robotic device. World Neurosurg. 123, e450–e456. https://doi.org/10.1016/j.
             wneu.2018.11.187.
          Yue, Z., Zhang, X., Wang, J., 2017. Hand rehabilitation robotics on poststroke motor recov-
             ery. Behav. Neurol. https://doi.org/10.1155/2017/3908135.
          Zarrad, W., et al., 2007a. Stability and transparency analysis of a haptic feedback controller for
             medical applications. In: Proceedings of the IEEE Conference on Decision and Control.
             https://doi.org/10.1109/CDC.2007.4434677.
          Zarrad, W., et al., 2007b. Towards teleoperated needle insertion with haptie feedback con-
             troller. In: IEEE International Conference on Intelligent Robots and Systems. https://
             doi.org/10.1109/IROS.2007.4399085.
          Zhang, X., Yue, Z., Wang, J., 2017. Robotics in lower-limb rehabilitation after stroke.
             Behav. Neurol. https://doi.org/10.1155/2017/3731802.
          Zhang, Y., et al., 2019. Could social robots facilitate children with autism spectrum disorders
             in learning distrust and deception? Comput. Hum. Behav. 98, 140–149. https://doi.org/
             10.1016/j.chb.2019.04.008.
          Zuo, K.J., Olson, J.L., 2014. The evolution of functional hand replacement: from iron
             prostheses to hand transplantation. Can. J. Plast. Surg. https://doi.org/10.1177/2292550
             31402200111.
   218   219   220   221   222   223   224   225   226   227   228