Page 223 - Control Theory in Biomedical Engineering
P. 223
204 Control theory in biomedical engineering
Walsh, C.J., et al., 2008. A patient-mounted, telerobotic tool for CT-guided percutaneous
interventions. J. Med. Devices 2(1). https://doi.org/10.1115/1.2902854.
Wang, Q., Chen, W., Markopoulos, P., 2014. Literature review on wearable systems in
upper extremity rehabilitation. In: 2014 IEEE-EMBS International Conference on Bio-
medical and Health Informatics, BHI. https://doi.org/10.1109/BHI.2014.6864424.
Wang, Q., et al., 2017. Interactive wearable systems for upper body rehabilitation: a system-
atic review. J. NeuroEng. Rehabil. https://doi.org/10.1186/s12984-017-0229-y.
Witte, K.A., Collins, S.H., 2020. Design of lower-limb exoskeletons and emulator systems.
In: Wearable Robotics. Elsevier, pp. 251–274. https://doi.org/10.1016/B978-0-12-
814659-0.00013-8.
Wolf, A., Shoham, M., 2009. Medical automation and robotics. In: Springer Handbook of
Automation. Springer, Berlin, Heidelberg, pp. 1397–1407. https://doi.org/10.1007/
978-3-540-78831-7_78.
Xie, S., 2016. Advanced robotics for medical rehabilitation. In: Advanced Robotics for
Medical Rehabilitation. Springer International Publishing, Cham. https://doi.org/
10.1007/978-3-319-19896-5 Springer Tracts in Advanced Robotics.
Yan, T., et al., 2015. Review of assistive strategies in powered lower-limb orthoses and
exoskeletons. Robot. Auton. Syst. https://doi.org/10.1016/j.robot.2014.09.032.
Yang, G.-Z., et al., 2017a. Medical robotics—regulatory, ethical, and legal considerations for
increasing levels of autonomy. Sci. Robot. 2(4), eaam8638. https://doi.org/10.1126/
scirobotics.aam8638.
Yang, X., et al., 2017b. State of the art: bipedal robots for lower limb rehabilitation. Appl. Sci.
7 (11), 1182. https://doi.org/10.3390/app7111182.
Yang, C., et al., 2018. ‘Force modeling, identification, and feedback control of robot-assisted
needle insertion: a survey of the literature. Sensors 18 (2), 561. https://doi.org/10.3390/
s18020561.
Yasin, H., et al., 2019. Experience with 102 frameless stereotactic biopsies using the neuro-
mate robotic device. World Neurosurg. 123, e450–e456. https://doi.org/10.1016/j.
wneu.2018.11.187.
Yue, Z., Zhang, X., Wang, J., 2017. Hand rehabilitation robotics on poststroke motor recov-
ery. Behav. Neurol. https://doi.org/10.1155/2017/3908135.
Zarrad, W., et al., 2007a. Stability and transparency analysis of a haptic feedback controller for
medical applications. In: Proceedings of the IEEE Conference on Decision and Control.
https://doi.org/10.1109/CDC.2007.4434677.
Zarrad, W., et al., 2007b. Towards teleoperated needle insertion with haptie feedback con-
troller. In: IEEE International Conference on Intelligent Robots and Systems. https://
doi.org/10.1109/IROS.2007.4399085.
Zhang, X., Yue, Z., Wang, J., 2017. Robotics in lower-limb rehabilitation after stroke.
Behav. Neurol. https://doi.org/10.1155/2017/3731802.
Zhang, Y., et al., 2019. Could social robots facilitate children with autism spectrum disorders
in learning distrust and deception? Comput. Hum. Behav. 98, 140–149. https://doi.org/
10.1016/j.chb.2019.04.008.
Zuo, K.J., Olson, J.L., 2014. The evolution of functional hand replacement: from iron
prostheses to hand transplantation. Can. J. Plast. Surg. https://doi.org/10.1177/2292550
31402200111.