Page 215 - Control Theory in Biomedical Engineering
P. 215
196 Control theory in biomedical engineering
Dı ´az, I., Gil, J.J., Sa ´nchez, E., 2011. Lower-limb robotic rehabilitation: literature review and
challenges. J. Robot. https://doi.org/10.1155/2011/759764.
Dı ´az, C.E., et al., 2017. A research review on clinical needs, technical requirements, and nor-
mativity in the design of surgical robots. Int. J. Med. Robot. 13(4), e1801. https://doi.
org/10.1002/rcs.1801.
Dogangil, G., Davies, B.L., Rodriguez y Baena, F., 2010. A review of medical robotics for
minimally invasive soft tissue surgery. Proc. Inst. Mech. Eng. H J. Eng. Med. 224 (5),
653–679. https://doi.org/10.1243/09544119JEIM591.
Dollar, A.M., Herr, H., 2008. Lower extremity exoskeletons and active orthoses: challenges
and state-of-the-art. IEEE Trans. Robot. 24 (1), 144–158. https://doi.org/10.1109/
TRO.2008.915453.
Dombre, E., 2003. Introduction to Medical Robotics. Summer European University on
Surgical Robotics, Montpellier. http://www.lirmm.fr/uee07/presentations/lecturers/
Dombre.pdf.
Driessen, B.J.F., Evers, H.G., van Woerden, J.A., 2001. MANUS—a wheelchair-mounted
rehabilitation robot. Proc. Inst. Mech. Eng. H J. Eng. Med. 215 (3), 285–290. https://
doi.org/10.1243/0954411011535876.
Duchemin, G., et al., 2005. A hybrid position/force control approach for identification of
deformation models of skin and underlying tissues. IEEE Trans. Biomed. Eng. 52 (2),
160–170. https://doi.org/10.1109/TBME.2004.840505.
Dzahir, M.A.M., Yamamoto, S.I., 2014. Recent trends in lower-limb robotic rehabilitation
orthosis: control scheme and strategy for pneumatic muscle actuated gait trainers.
Robotics. https://doi.org/10.3390/robotics3020120.
Enayati, N., De Momi, E., Ferrigno, G., 2016. Haptics in robot-assisted surgery: challenges
and benefits. IEEE Rev. Biomed. Eng. 9, 49–65. https://doi.org/10.1109/RBME.
2016.2538080.
Ergasheva, B.I., 2017. Lower limb exoskeletons: brief review. Sci. Tech. J. Inform. Technol.
Mech. Opt. 17 (6), 1153–1158. https://doi.org/10.17586/2226-1494-2017-17-6-
1153-1158.
Faria, B.M., Reis, L.P., Lau, N., 2014. A survey on intelligent wheelchair prototypes and
simulators. In: Advances in Intelligent Systems and Computing. https://doi.org/
10.1007/978-3-319-05951-8_52.
Faria, C., et al., 2015. Review of robotic technology for stereotactic neurosurgery. IEEE
Rev. Biomed. Eng. 8, 125–137. https://doi.org/10.1109/RBME.2015.2428305.
Fei, B., et al., 2001. The safety issues of medical robotics. Reliab. Eng. Syst. Saf. 73 (2),
183–192. https://doi.org/10.1016/S0951-8320(01)00037-0.
Feil-Seifer, D., Mataric, M.J., 2005. Socially assistive robotics. In: 9th International Confer-
ence on Rehabilitation Robotics, 2005 (ICORR 2005). IEEE, pp. 465–468. https://
doi.org/10.1109/ICORR.2005.1501143.
Ferreira, A.C., et al., 2015. Teleultrasound: historical perspective and clinical application. Int.
J. Telemed. Appl. https://doi.org/10.1155/2015/306259.
Ferrigno, G., et al., 2011. Medical robotics. IEEE Pulse 2 (3), 55–61. https://doi.org/
10.1109/MPUL.2011.941523.
Frisoli, A., 2018. Exoskeletons for upper limb rehabilitation. In: Rehabilitation Robotics.
Elsevier, pp. 75–87. https://doi.org/10.1016/B978-0-12-811995-2.00006-0.
Garcia-Aracil, N., Casals, A., Garcia, E., 2017. Rehabilitation and assistive robotics. Adv.
Mech. Eng. https://doi.org/10.1177/1687814017699338.
Gassert, R., Dietz, V., 2018. Rehabilitation robots for the treatment of sensorimotor deficits:
a neurophysiological perspective. J. NeuroEng. Rehabil. https://doi.org/10.1186/
s12984-018-0383-x.
George Thuruthel, T., et al., 2018. Control strategies for soft robotic manipulators: a survey.
Soft Rob. 5 (2), 149–163. https://doi.org/10.1089/soro.2017.0007.