Page 214 - Control Theory in Biomedical Engineering
P. 214
Medical robotics 195
Chen, G., et al., 2013a. A review of lower extremity assistive robotic exoskeletons in reha-
bilitation therapy. Crit. Rev. Biomed. Eng. 41 (4–5), 343–363. https://doi.org/
10.1615/CritRevBiomedEng.2014010453.
Chen, T.L., et al., 2013b. Robots for humanity: using assistive robotics to empower people
with disabilities. IEEE Robot. Autom. Mag. 20 (1), 30–39. https://doi.org/10.1109/
MRA.2012.2229950.
Chen, B., et al., 2016. Recent developments and challenges of lower extremity exoskeletons.
J. Orthop. Transl. https://doi.org/10.1016/j.jot.2015.09.007.
Chikhaoui, M.T., Burgner-Kahrs, J., 2018. Control of continuum robots for medical appli-
cations: state of the art. In: International Conference on New Actuators.
Chiniara, G., Crelinsten, L., 2019. A brief history of clinical simulation: how did we get here?
In: Clinical Simulation. Elsevier, pp. 3–16. https://doi.org/10.1016/B978-0-12-
815657-5.00001-2.
Chu, C.Y., Patterson, R.M., 2018. Soft robotic devices for hand rehabilitation and assistance: a
narrative review. J. NeuroEng. Rehabil. https://doi.org/10.1186/s12984-018-0350-6.
Cianchetti, M., et al., 2018. Biomedical applications of soft robotics. Nat. Rev. Mater. 3 (6),
143–153. https://doi.org/10.1038/s41578-018-0022-y.
Cleary, K., Nguyen, C., 2001. State of the art in surgical robotics: clinical applications and
technology challenges. Comput. Aided Surg. 6 (6), 312–328. https://doi.org/
10.3109/10929080109146301.
Clotet, E., et al., 2016. Assistant personal robot (APR): conception and application of a tele-
operated assisted living robot. Sensors 16 (5), 610. https://doi.org/10.3390/s16050610.
Colombo, R., Sanguineti, V., 2018. Rehabilitation robotics: technology and applications.
In: Rehabilitation Robotics. https://doi.org/10.1016/b978-0-12-811995-2.09991-4.
Cooper, J.B., 2004. A brief history of the development of mannequin simulators for clinical
education and training. Qual. Saf. Health Care. https://doi.org/10.1136/qhc.13.
suppl_1.i11.
Cooper, J.B., Taqueti, V.R., 2008. A brief history of the development of mannequin sim-
ulators for clinical education and training. Postgrad. Med. J. 84 (997), 563–570. https://
doi.org/10.1136/qshc.2004.009886.
Cortesa ˜o, R., et al., 2006. Haptic control design for robotic-assisted minimally invasive sur-
gery. In: IEEE International Conference on Intelligent Robots and Systems. https://doi.
org/10.1109/IROS.2006.282168.
Costa, A., Novais, P., Julian, V., 2018. A survey of cognitive assistants. In: Intelligent Systems
Reference Library. https://doi.org/10.1007/978-3-319-62530-0_1.
Daneshmand, M., et al., 2017. Medical robots with potential applications in participatory and
opportunistic remote sensing: a review. Robot. Auton. Syst. https://doi.org/10.1016/j.
robot.2017.06.009.
Dario, P., et al., 1996. Robotics for medical applications. IEEE Robot. Autom. Mag. 3 (3),
44–56. https://doi.org/10.1109/100.540149.
Davies, B.L., 1996. A discussion of safety issues for medical robots. In: Computer-Integrated
Surgery: Technology and Clinical Applications. p. 756.
Davies, B., 2015. Robotic surgery—a personal view of the past, present and future. Int. J.
Adv. Robot. Syst. 12 (5), 54. https://doi.org/10.5772/60118.
De Benedictis, A., et al., 2017. Robot-assisted procedures in pediatric neurosurgery. Neu-
rosurg. Focus. https://doi.org/10.3171/2017.2.FOCUS16579.
Dello Russo, A., et al., 2016. Analysis of catheter contact force during atrial fibrillation abla-
tion using the robotic navigation system: results from a randomized study. J. Interv. Card.
Electrophysiol. https://doi.org/10.1007/s10840-016-0102-0.
Dellon, B., Matsuoka, Y., 2007. Prosthetics, exoskeletons, and rehabilitation [grand chal-
lenges of robotics]. IEEE Robot. Autom. Mag. 14 (1), 30–34. https://doi.org/
10.1109/MRA.2007.339622.