Page 402 - Control Theory in Biomedical Engineering
P. 402

Index  369


              Continuous glucose monitoring (CGM)  CVDs. See Cardiovascular diseases (CVDs)
                   sensor, 63–64               Cytokines, 84np
              Continuous subcutaneous insulin infusion  with adoptive cellular immunotherapy,
                   (CSII), 63                       84–85
              Continuous-time vs. discrete-rime models,  IL-2 and interferon-alpha (INF-α),
                   9–10                             84–85
              Continuum metastructural test    Cytotoxic T lymphocyte (CTL), 30
               chiral structure tests, 336, 338f
               double arrow honeycomb structure tests,  D
                   336, 337f                   Data-driven modeling (DDM), 7–9,
               mechanical test specifications, 332–333,  10f,64
                   332f                        da Vinci surgical system, 156–157,
               missing rib structure tests, 333–335, 335f  156–158f, 166, 171–173, 173f
               re-entrant honeycomb structure tests,  DDM. See Data-driven modeling
                   333, 334f                        (DDM)
               star structure tests, 336, 339f  Decision support system (DSS), 105–107
              Continuum robots, 161            Delay differential equations (DDEs),
              Control approaches, exoskeletons,     85–87
                   253–256                       Hamiltonian, 97–98
               active-assisted and active modes therapy,  Matlab program for optimal control,
                   253–254                          98–102
               adaptive visual or image-based tracking  numerical simulations, 98
                   control, 255–256              optimal control problem, 96–98
               approximation-based control strategies,  Pontryagin’s maximum principle, 97–98
                   255                           time-delays, 96–97
               backstepping technique, 255     Dendritic cells, 30
               decentralized adaptive control, 255  Deterministic vs. stochastic models, 9–10
               Lyapunov theory, 254–255        Detrended fluctuation analysis (DFA), 268,
               passive physical therapy, 253–254    278, 281–282
               sensors and actuators, 253        stride length, 278, 279f
               stability of system, 254–255      stride position, 280, 280f
               time delay estimation, 254–255    stride time, 278, 279f
               of uncertain nonlinear dynamics, 254  stride velocity, 278, 280f
              Control therapy                  Direct control, electromyography, 215
               adaptive control, 30–31         Direct nasopharyngoscopy, 287–288
               fuzzy logic control, 31         Direct-neural stimulation, 221–222
               optimal control, 30             Double arrowhead structure
              Corpus luteum, 27–28               auxetic behavior of, 331–332, 331f
              CR. See Chylomicron remnants (CR)  computer aided design of, 331f
              CTAN, 235np                      Dynamical models, Kalman filter, 132
              CTL. See Cytotoxic T lymphocyte (CTL)
              Cursive writing, electromyography  E
               experimental approach, 135–138, 136t,  Effectors, 24, 25f,25t
                   138t, 139f                  Electrocardiogram (ECG), 105–107
               Murata-Kosaku-Sano model, 139–140,  feature extraction, 111–114, 112–113f
                   140f                          signal filtering, 110, 111f
               robust handwriting characterization,  Electro/magneto-rheological (ER/MR)
                   140–145, 142–144f                fluids, 318–319, 319f
   397   398   399   400   401   402   403   404   405   406   407