Page 403 - Control Theory in Biomedical Engineering
P. 403

370   Index


          Electromyography (EMG) signals       sensors, 252–253, 256
            control schemes, 215–216           singularity, 251–252, 256
            cursive writing                   existing, 239–247, 242–245t
              experimental approach, 135–138, 136t,  ARMin-III, 246
                138t, 139f                     CABXLexo-7, 246
              interval observer robust handwriting,  CADEN-7, 236–237, 238f
                140–145, 142–144f              ETS-MARSE, 236–237, 238f,
              Murata-Kosaku-Sano model, 139–140,  246–247
                140f                           Harmony, 236–237, 238f, 247–249
            handwriting models, 131–132        SUEFUL-7, 236–237, 238f, 239–241
            Kalman filter-based model, 131–132  for lifting heavy loads, 237
            Zhang-Kamavuako model, 133–135    modularity (reconfigurability), 256–257
          Electrotactile stimulation, 219–220  parallel wrist rehabilitation robot,
          EMG. See Electromyography (EMG)        236–237
                signals                       for power augmentation, 237
          Empowering robotic exoskeletons, 209–210  range of motion, 236–237, 247–249,
          End-effector-type devices              256–257
            ARM guide, 235–236, 236f          recently proposed
            MIT-MANUS, 235–236, 236f           BLUE SABINO, 236–237, 240f
          Endocrine system models, 12–13, 14t  u-Rob, 236–237, 240f
          Enterohepatic circulation, 46, 52–54, 58  RehabArm, 236–237
          Equilibria, 18–19                   6-REXOS, 236–237
          Equivalent modeling approach, 6–7, 8t  self-aligning, 248–249
          ETS-MARSE, 236–237, 238f, 246–247   to use as body extender, 237
          Exoskeleton devices, 183–185, 184f, 186f,  Extended Physiologic Taction (EPT),
                187t, 188f                       220–221
          Exoskeletons                      Extenders, 209–210
            BLEEX, 237                      Extensor capri ulnaris (ECU), 135
            CABexo, 236–237                 Externally powered prosthesis, 213–214
            cable-driven-type
              CABXLexo-7, 236–237, 239f     F
              CAREX-7, 236–237, 239f, 248–249  Feature extraction for manipulating
            commercially available               constraints, 71
              Armeopower exoskeleton, 236–237,  Feedback vs. adaptive control strategies,
                241f                             28–29, 29f
              ARMIN, 236–237, 241f          Feed-forward control system, 23–25, 26f
            control approaches, 253–256     Finite-state machine control,
            design requirements and challenges,  electromyography, 215
                247–253                     Flexible nasopharyngoscope, 292, 293t, 293f
              actuation, 249–250, 256       Flexinol Actuator Spring, 295
              alignment of exoskeleton joints with  FLX-9070, 300, 302f
                human joints, 248–249, 256  Food and Drug Administration (FDA)
              backdrivability, 252, 256       robotic devices and platforms, 175–176,
              comfort of wearing, 248, 256       176t, 177–180f
              power transmission mechanism,   robotic exoskeleton EksoGT, 186f
                250–251, 256–257            Fridewald’s rule, 56–57
              safety, 247, 256              Fuji Film ENT-Serie ER-530S2, 309
   398   399   400   401   402   403   404   405   406   407   408