Page 289 - Decision Making Applications in Modern Power Systems
P. 289

Particle swarm optimization applied Chapter | 10  249


             candidate buses for renewable generation allocation. Section 10.5 showcases
             the tangent-vector-based generators identification for reactive power
             dispatch. Section 10.4 presents the PSO technique. Section 10.6 depicts the
             overall methodology for PSO application to reactive power dispatch consid-
             ering tangent-vector-based generation selection and renewable generation
             penetration. Section 10.8 presents the obtained results for the IEEE 118-bus
             system. At last, Section 10.9 draws the major conclusions of the chapter and
             final remarks.


             10.2 Voltage collapse indexes

             Voltage collapse indexes are used to determine the system distance to
             voltage stability problems. These factors are critical in power system
             planning and operation analysis, as they can predict operational conditions
             that should be avoided.


             10.2.1 Tangent vector

             The tangent vector indicates how the state variables (θ g , θ l , and V l ) behave
             with the variation of a system parameter, such as load increase. This vector
             identifies the most susceptible buses to voltage collapse for a given operating
             point, thus being an effective tool for identifying critical buses and prevent-
             ing the saddle-node bifurcation point [12].

                                     2    3
                                      Δθ g
                                     6  Δλ 7
                                     6    7        2    3
                                     6    7          P g0
                                     6  Δθ l 7
                                TV 5  6   7  5 J ½Š  21 4  P l0  5     ð10:1Þ

                                     6  Δλ 7
                                                     Q l0
                                     6    7
                                     6    7
                                     4  ΔV l 5
                                       Δλ
             where P g0 , P l0 , and Q l0 are the active power generation, and active and
             reactive power demands, respectively, λ is the increased parameter, and J is
             the converged Jacobian matrix of the load flow.
             10.2.2 PV curve

             One of the most widely used methods for static stability analysis is based on
             the PV curve behavior. The maximum point, P max , represents the maximum
             loading that the system can support without voltage stability loss, as shown
             in Fig. 10.1. This point corresponds to the load margin, which is defined as
             the distance from an initial operating point of interest to the saddle-node
             bifurcation point, that is, voltage collapse condition.
   284   285   286   287   288   289   290   291   292   293   294