Page 372 - Decision Making Applications in Modern Power Systems
P. 372
334 Decision Making Applications in Modern Power Systems
[30] G. Granelli, M. Montagna, G. Pasini, P. Marannino, Emission constrained dynamic dis-
patch, Electr. Power Syst. Res. 24 (1) (1992) 55 64.
[31] D.W. Green, Perry’s Chemical Engineering Handbook, McGrawHill Professional Publ,
2007.
[32] H.Y. Yamin, Q. Ei-Dwairi, S.M. Shahidehpour, A new approach for GenCos profit based
unit commitment in day-ahead competitive electricity markets considering reserve uncer-
tainty, Electr. Power Energy Syst. 29 (2007) 609 616.
[33] B. Hassler, B.C. Mcdonald, A. Borbon, K. Civerolo, C. Granier, G.J. Frost, et al., The
application of long-term observations of NO x and CO to constrain a global emissions
inventory, in: Paper Presented at the IGAC 2016 Science Conference (International
Global Atmospheric Chemistry), 2016.
[34] J.S. Holladay, J. LaRiviere, The impact of cheap natural gas on marginal emissions from
electricity generation and implications for energy policy, J. Environ. Econ. Manage. 85
(2017) 205 227. Available from: https://doi.org/10.1016/j.jeem.2017.06.004.
[35] B. Hong, E. Slatick, Carbondioxide emission factors for coal, Q. Coal Rep. (1994) 7.
[36] I. Kockar, A. Conejo, R. Mcdonald, Influence of the emissions trading scheme on genera-
tion scheduling, Electr. Power Energy Syst. 3 (1) (2009) 465 473.
[37] L. Jebaraj, C. Venkatesan, I. Soubache, C.C.A. Rajan, Application of differential evolu-
tion algorithm in static and dynamic economic or emission dispatch problem: a review,
Renew. Sustain. Energy Rev. 77 (2017) 1206 1220. Available from: https://doi.org/
10.1016/j.rser.2017.03.097.
[38] X. Jiang, J. Zhou, H. Wang, Y. Zhang, Dynamic environmental economic dispatch using
multiobjective differential evolution algorithm with expanded double selection and adap-
tive random restart, Int. J. Electr. Power Energy Syst. 49 (2013) 399 407.
[39] A.M. Jubril, O.A. Olaniyan, O.A. Komolafe, P.O. Ogunbona, Economic-emission dispatch
problem: a semi-definite programming approach, Appl. Energy 134 (2014) 446 455.
[40] M.P. Kasmaei, Despacho o ´timo de pote ˆncias ativa e reativa de sistema ele ´tricos multi-
´ areas considerando restric¸o ˜es f´ ısicas, econo ˆmicas e ambientais 5 : environmentally con-
strained active-reactive optimal power flow-a compromising strategy for economic-
emission dispatch and a multi-area paradigm, 2015.
[41] A.G. Ko ¨k, K. Shang, S. Yu ¨cel, Impact of electricity pricing policies on renewable energy
investments and carbon emissions, Manage. Sci. 64 (2016) 1 493.
[42] E.T. Lau, Q. Yang, G.A. Taylor, A.B. Forbes, P.S. Wright, V.N. Livina, Optimisation of
costs and carbon savings in relation to the economic dispatch problem as associated with
power system operation, Electr. Power Syst. Res. 140 (2016) 173 183. Available from:
https://doi.org/10.1016/j.epsr.2016.06.025.
[43] Y. Li, M. Li, Q. Wu, Energy saving dispatch with complex constraints: prohibited zones,
valve point effect and carbon tax, Int. J. Electr. Power Energy Syst. 63 (2014) 657 666.
[44] X. Liu, B. Lin, Y. Zhang, Sulfur dioxide emission reduction of power plants in China:
current policies and implications, J. Cleaner Prod. 113 (2016) 133 143. Available from:
https://doi.org/10.1016/j.jclepro.2015.12.046.
[45] G. Lobos, O. Vallejos, C. Caroca, C. Marchant, El Mercado de los Bonos de Carbono
(“bonos verdes”): Una Revisio ´n, RIAT, 1 (1) (2005).
[46] X. Ma, Y. Wang, C. Wang, Low-carbon development of China’s thermal power industry
based on an international comparison: review, analysis and forecast, Renew. Sustain.
Energy Rev. 80 (2017) 942 970. Available from: https://doi.org/10.1016/j.
rser.2017.05.102.