Page 373 - Decision Making Applications in Modern Power Systems
P. 373
Heuristic methods for the evaluation of environmental impacts Chapter | 12 335
[47] N.M. Moraes, Modelo matem´ atico para otimizac¸a ˜o multiobjetivo do despacho econo ˆmico
ambiental de usinas te ´rmicas usando o NSGA-II. UNIVERSIDADE FEDERAL DO
PARA ´ INSTITUTO DE TECNOLOGIA PROGRAMA DE PO ´ S-GRADUAC¸A ˜ OEM
ENGENHARIA ELE ´ TRICA, 2017.
[48] E. Muela, J. Secue, Environmental economic dispatch with fuzzy and possibilistic entities,
Rev. Fac. Ingenier´ ıa 59 (2012) 227 236.
[49] M. Muslu, Economic dispatch with environmental considerations: tradeoff curves and
emission reduction rates, Electr. Power Syst. Res. 71 (2) (2004) 153 158.
[50] N. Mustafa-Moraes, U. Holanda-Bezerra, J.L. Moya-Rodr´ ıguez, J. Cabral-Leite, The emis-
sion index as a parameter for assessing the environmental pollution from thermal power
plants. Case study, Dyna 83 (199) (2016) 218 224.
[51] R. Muthuswamy, M. Krishnan, K. Subramanian, B. Subramanian, Environmental and eco-
nomic power dispatch of thermal generators using modified NSGA-II algorithm, Int.
Trans. Electr. Energy Syst. 25 (8) (2015) 17.
[52] E. Naderi, A. Azizivahed, H. Narimani, M. Fathi, M.R. Narimani, A comprehensive study
of practical economic dispatch problems by a new hybrid evolutionary algorithm, Appl.
Soft Comput. (2017). Available from: https://doi.org/10.1016/j.asoc.2017.06.041.
[53] N.I. Nwulu, X. Xia, Multi-objective dynamic economic emission dispatch of electric
power generation integrated with game theory based demand response programs, Energy
Convers. Manage. 89 (0) (2015) 963 974. Available from: https://dx.doi.org/10.1016/j.
enconman.2014.11.001.
[54] I. Pavic, T. Capuder, I. Kuzle, Low carbon technologies as providers of operational flexi-
bility in future power systems, Appl. Energy 168 (2016) 724 738. Available from:
https://doi.org/10.1016/j.apenergy.2016.01.123.
[55] B. Purkayastha, N. Sinha, Optimal combined economic and emission load dispatch using
modified NSGA-II with adaptive crowding distance, Int. J. Inform. Technol. Knowl.
Manage. 2 (2) (2010) 553 559.
[56] B.Y. Qu, J.J. Liang, Y.S. Zhu, Z.Y. Wang, P.N. Suganthan, Economic emission dispatch
problems with stochastic wind power using summation based multi-objective evolutionary
algorithm, Inform. Sci. 351 (2016) 48 66. Available from: https://doi.org/10.1016/j.
ins.2016.01.081.
[57] B.Y. Qu, Y.S. Zhu, Y.C. Jiao, M.Y. Wu, P.N. Suganthan, J.J. Liang, A survey on multi-
objective evolutionary algorithms for the solution of the environmental/economic dispatch
problems, Swarm Evol. Comput. (2017). Available from: https://doi.org/10.1016/j.
swevo.2017.06.002.
[58] I.J. Raglend, S. Veeravalli, K. Sailaja, B. Sudheera, D.P. Kothari, Comparison of AI tech-
niques to solve combined economic emission dispatch problem with line flow constraints,
Electr. Power Energy Syst. 32 (2010) 592 598.
[59] N.G. Rahul Dogra, H. Saroa, Economic load dispatch problem and Matlab programming
of different methods, in: International Conference of Advance Research and Innovation
(ICARI-2014), 2014.
[60] A. Rajan, T. Malakar, Optimum economic and emission dispatch using exchange
market algorithm, Int. J. Electr. Power Energy Syst. 82 (2016) 545 560. Available from:
https://doi.org/10.1016/j.ijepes.2016.04.022.
[61] S. Rebennack, B. Flach, M.V. Pereira, P.M. Pardalos, Stochastic hydro-thermal scheduling
under CO 2 emissions constraints, IEEE Trans. Power Syst. 27 (1) (2012) 58 68.
[62] P.T. Rodr´ ıguez-Pin ˜ero, Introduccio ´n a los algoritmos gene ´ticos y sus aplicaciones:
Universidad Rey Juan Carlos, Servicio de Publicaciones, 2003.