Page 371 - Decision Making Applications in Modern Power Systems
P. 371
Heuristic methods for the evaluation of environmental impacts Chapter | 12 333
[12] C. Palanichamy, N.S. Babu, Day-night weather-based economic power dispatch, IEEE
Trans. Power Syst 17 (2) (2002) 469 475.
[13] J.C.O. Carretero, D.G. C´ anovas, F.D.Q. Pereira, Te ´cnicas Heur´ ısticas para Problemas de
Disen ˜o en Telecomunicaciones, 2008.
[14] J.P.S. Catalao, S.P.S. Mariano, V.M.F. Mendes, L.A.F.M. Ferreira, Profit-based unit com-
mitment with emission limitations: a multiobjective approach, Power Tech. (2007).
1417 1422.
[15] S. Chaturvedi, Right to Pollute? An Understanding on the Implications of International
Carbon Trading Market, 2014.
[16] F. Chen, J. Zhou, C. Wang, C. Li, P. Lu, A modified gravitational search algorithm based
on a non-dominated sorting genetic approach for hydro-thermal-wind economic emission
dispatching, Energy 121 (2017) 276 291. Available from: https://doi.org/10.1016/j.
energy.2017.01.010.
[17] Conama, Padroes de Qualidade do ar. Portal Saude., 2017. Available from: ,https://por-
tal.saude.gov.br/portal/arquivos/pdf/conama_03_90_padroes_de_qualidade_do_ar.pdf.,
1990 (retrieved 01.01.17).
[18] R. Conama, 357, de 17 de Marco de 2006. Conselho Nacional do Meio Ambiente-
¸
CONAMA, 357, 2006.
[19] J. Curtis, M.A ´ . Lynch, L. Zubiate, Carbon dioxide (CO 2 ) emissions from electricity: the
influence of the North Atlantic Oscillation, Appl. Energy 161 (2016) 487 496. Available
from: https://doi.org/10.1016/j.apenergy.2015.09.056.
[20] N. Daryani, K. Zare, Multiobjective power and emission dispatch using modified group
search optimization method, Ain Shams Eng. J. (2015). Available from: https://doi.org/
10.1016/j.asej.2016.03.001.
[21] E. Delarue, K. Van den Bergh, Carbon mitigation in the electric power sector under cap-
and-trade and renewables policies, Energy Policy 92 (2016) 34 44. Available from:
https://doi.org/10.1016/j.enpol.2016.01.028.
[22] D. Ashish, D. Arunesh, P. Surya, A.K. Bhardwaj, A traditional approach to solve eco-
nomic load dispatch problem of thermal generating unit using MATLAB programming,
Int. J. Eng. Res. Technol. (IJERT) 2 (9) (2013) 3147 3152.
[23] J. Dhillon, S.K. Jain, Multi-objective generation and emission dispatch using NSGA-II,
IACSIT Int. J. Eng. Technol. 3 (5) (2011) 460.
[24] J. English, T. Niet, B. Lyseng, K. Palmer-Wilson, V. Keller, I. Moazzen, et al., Impact of
electrical intertie capacity on carbon policy effectiveness, Energy Policy 101 (2017)
571 581. Available from: https://doi.org/10.1016/j.enpol.2016.10.026.
[25] B.A.D. Fern´ andez, K. Dowsland, Disen ˜o de heur´ ısticas y fundamentos del recocido simu-
lado, Inteligencia Artif.: Rev. Iberoam. Inteligencia Artif. 7 (19) (2003) 93 102.
[26] C.A. Floudas, Deterministic Global Optimization: Theory, Methods and Applications,
vol. 37, Springer Science & Business Media, 2013.
[27] L.L. Garver, Power generation scheduling by integer programming—development of the-
ory, IEEE Trans. Power Apparatus Syst. PAS 82 (3) (1963) 730 735.
[28] A. Ghasemi, M. Gheydi, M.J. Golkar, M. Eslami, Modeling of Wind/Environment/
Economic Dispatch in power system and solving via an online learning meta-heuristic
method, Appl. Soft Comput. 43 (2016) 454 468. Available from: https://doi.org/10.1016/
j.asoc.2016.02.046.
[29] G. Grande-Acosta, J. Islas-Samperio, Towards a low-carbon electric power system in
Mexico, Energy Sustain. Dev. 37 (2017) 99 109.