Page 222 - Design and Operation of Heat Exchangers and their Networks
P. 222

Optimal design of heat exchangers  211



                    The shell-side hydraulic diameter in window section is expressed by
                 Eq. (5.76):

                               4A sw               4 0:01287
                     d hw ¼             ¼
                          N tw πd o + d s θ ds =2  18:53 π  0:019 + 0:336 2:131=2
                        ¼ 0:03517 m

                 (3)  Calculation of tube-side heat transfer coefficient
                 The tube-side Reynolds number is given by
                             4 _m t           4 18:1
                      Re t ¼      ¼                            ¼ 32,401
                           N t,p πd i μ  52 π  0:0166 8:2398 10  4
                                  t
                              4
                 Because Re t  10 , we can use the Dittus-Boelter correlation (Dittus and
                 Boelter, 1930) to calculate the tube-side Nusselt number:
                                     Nu t ¼ 0:023Re 0:8 Pr n t
                                                  t
                 with n¼0.4 for heating,

                            Nu t ¼ 0:023 32,401 0:8  5:3429 0:4  ¼ 182:51
                 and then obtain the tube-side heat transfer coefficient as

                                                                    2
                      α t ¼ Nu t λ t =d i ¼ 182:51 0:61814=0:0166 ¼ 6796:2W=m K

                 (4)  Calculation of shell-side heat transfer coefficient
                 Since s l <d o , we use Eq. (5.42) to calculate the heat transfer coefficient for
                 ideal crossflow. We calculate at first the tube bundle Reynolds number as
                 follows:
                    Because s l <s l,min , we have
                                  _ m s s t =2   36:3 0:03536=2
                       G s,max ¼         ¼
                                                        ð
                                  ð
                               d s l bc s d  d o Þ  0:336 0:279  0:025 0:019Þ
                                         2
                             ¼ 1140:9kg=m s
                                   Re tb ¼ G s,max d o =μ ¼ 727:25
                                                 s
                    The Hagen number for laminar flow is calculated with Eq. (5.51):
                                     0:5     2
                                ð s l =d o Þ   0:6  +0:75
                 Hg lam  ¼ 140Re tb      1:6
                              ∗
                                          ð
                                     ð
                              s =d o  ½ 4 s l =d o Þ s t =d o Þ=π  1Š
                              t
                                                     0:5     2
                                          ð 0:01768=0:019Þ   0:6  +0:75
                     ¼ 140 727:25        1:6
                                                           ð
                                ð 0:025=0:019Þ  ½ 4  0:01768=0:019Þ  0:03536=0:019Þ=π  1Š
                                              ð
                     ¼ 48,114
   217   218   219   220   221   222   223   224   225   226   227