Page 226 - Design and Operation of Heat Exchangers and their Networks
P. 226

Optimal design of heat exchangers  215



                    The Blasius equation can be used to calculate the friction factor for fully
                 developed flow in a smooth circular tube:

                                 f D,t ¼ 0:3164Re  0:25
                                             t                        (5.94)
                                 ¼ 0:3164 32401  0:25  ¼ 0:02358
                    From Eq. (5.90), we obtain the tube-side total pressure drop for two
                 tube passes:
                                 _ m t       18:1                2
                          G t ¼    2  ¼             2  ¼ 1608 kg=m s
                              N t,p πd =4  52 π  0:0166 =4
                                   i
                          G 2 t       2      L       2
                   Δp t ¼ N p  1 σ + K c + f D,t   1 σ  K e
                          2ρ t               d i
                         1608 2          2                   4:3
                   ¼ 2           1 0:2538 +0:3778 +0:02358        0:3977
                        2 1021                             0:0166
                   ¼ 17,803Pa

                 (7)  Calculation of shell-side pressure drop
                 To calculate the pressure drop in an ideal tube bundle, we use Eq. (5.74) to
                 determine the number of tube rows in the flow direction along which the
                 maximum velocity occurs. Since s l <s l,min , we have
                                      ∗
                                    N ¼ N rc  1 ¼ 9 1 ¼ 8
                                     rc
                 The pressure drop in an ideal tube bundle is then given by
                                μ 2          0:02981 2
                     Δp b,id ¼ N ∗  s  Hg ¼ 8          48,114 ¼ 1092 Pa
                              rc  2                  2
                               ρ d        867:1 0:019
                                s o
                    The pressure drop in an ideal window section can be determined by
                 Eq. (5.75), in which the mass velocity in the window section is defined
                 by Eq. (5.77) as
                                _ m s        36:3                 2
                        G w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffip  ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip  ¼ 1786 kg=m s
                                        0:03209 0:01287
                               A sc A sw
                 Because Re sd >100, we have
                                          2
                                         G w            1786 2
                                             ð
                              ð
                       Δp w,id ¼ 1+ 0:3N rw Þ  ¼ 1+ 0:3 3Þ   ¼ 6990 Pa
                                         ρ s            867:1
                    The correction factors for the shell-side pressure drop are calculated
                 with Eqs. (5.60), (5.66), (5.69) respectively:
                                   ð
                                                            ð
                           ð
                                             ð
                   ζ ¼ e  1:33 1 + r s Þr 0:8 0:15 1 + rs Þ  ¼ e  1:33 1 + 0:4265Þ0:1132  0:8 0:15  1+ 0:4265Þ  ¼ 0:5890
                               lm
                    l
                 Since Re sd >100 and r ss <0.5, Eq. (5.66) can be expressed as follows with
                 C bp ¼3.7:
                                     1=3                   1=3
                                                  ½
                                ½
                                                    ð
                       ζ ¼ e  C bp r b 1  2r ss Þ Š  ¼ e  3:7 0:263  1  2 0:1111Þ Š  ¼ 0:6814
                                  ð
                        b
   221   222   223   224   225   226   227   228   229   230   231