Page 223 - Design and Operation of Heat Exchangers and their Networks
P. 223

212   Design and operation of heat exchangers and their networks



                Since Re tb  800, the Hagen number for staggered tube bundles is
             obtained from Eq. (5.46):
                                  Hg ¼ Hg lam  ¼ 48;114
                Finally, we obtain the Nusselt number from Eq. (5.42) as
                                           2       1=3
                                             ð
                Nu id ¼ 0:404 0:92HgPr s 4s t s l =π  d = s l s d Þ
                                           o
                    ¼ 0:404  0:92 48114 444:14
                            ½

                                               2               1=3
                      4 0:03536 0:01768=π  0:019 = 0:01768 0:025ð  ފ  ¼ 108:4
             which yields
                                                               2
                    α id ¼ Nu id λ s =d o ¼ 108:4 0:13937=0:019 ¼ 795 W=m K
                The correction factors are calculated with Eqs. (5.56), (5.57), (5.61),
             (5.68), (5.70). Some of them depend on the shell-side Reynolds number
             Re sd defined by Eq. (5.63):

                                 _ m s d o  36:6 0:019
                           Re sd ¼   ¼                ¼ 721
                                A sc μ  0:03209 0:02981
                                    s
             Because the shell-side Reynolds number Re sd >100, the coefficient in
             Eq. (5.61) is given by Eq. (5.62) as C bh ¼1.25, and the exponent in
             Eq. (5.68) is n¼0.6. Thus, we have

                       J c ¼ 0:55 + 0:72F c ¼ 0:55 + 0:72 0:6437 ¼ 1:013

                      ð
               J l ¼ 0:44 1 r s Þ +1 0:44 1 r s Þ½  ð  Še  2:2r lm
               ¼ 0:44  1 0:4265Þ +1 0:44  1 0:4265ފe   2:2 0:1132  ¼ 0:8351
                                  ½
                                            ð
                      ð
                                  1=3                  1=3
                            ½
                                              ½
                                                 ð
                               ð
                    J b ¼ e  C bh r b 1  2r ss Þ Š  ¼ e  1:25 0:263 1  2 0:1111Þ Š  ¼ 0:8784
                                 1 n        1 n
                           ð
                    N b  1+ l bi =l bc Þ  + l bo =l bc Þ
                                      ð
                 J s ¼
                      N b  1+ l bi =l bc Þ + l bo =l bc Þ
                              ð
                                      ð
                                       1 0:6             1 0:6
                    14 1+ 0:3365=0:279Þ    +0:3365=0:279Þ
                           ð
                                             ð
                  ¼                                          ¼ 0:9834
                               ð
                                             ð
                        14 1+ 0:3365=0:279Þ +0:3365=0:279Þ
               J r ¼ 1
                The shell-side heat transfer coefficient can be evaluated with Eq. (5.39):
                α s ¼ α id J c J l J b J s J r ¼ 795:5 1:013 0:8351 0:8784 0:9834 1
                              2
                  ¼ 581:6W=m K
              (5)  Calculation of thermal performance of the heat exchanger
             The overall heat transfer coefficient based on the shell-side heat transfer area
             can be expressed as
   218   219   220   221   222   223   224   225   226   227   228