Page 375 - Design and Operation of Heat Exchangers and their Networks
P. 375

358   Design and operation of heat exchangers and their networks


             The coefficient vector D in Eq. (7.173) is determined by substitution of
          Eqs. (7.134), (7.155), (7.173) into Eq. (7.169):

                            1   0  0    0    1    0

                                                 ^
                                                             00
                                          0
                                                        0
                                                0
                   0
           D ¼ V  GV     00   G Θ + ΔG T + G T 2 K 2GK  ΔGV           00  D
                                                          e
                      e
                                       e
                              e e
                                                                   e
                                             s

                                         1
                                0     00                 ^
                             ^ K  G ^ K +   V  GV        D           (7.181)
                                            ^0
                                                   ^00
                                   e
                                         s
                   ^
          in which D and D are calculated by Eqs. (7.131), (7.158), respectively, and
          the matrices
                                  hi         h    i
                              V ¼ v 0 ij   ¼ h ij e r j x 0 i        (7.182)
                               0
                                      M M          M M
                                  hi         h    00  i
                               00
                             V ¼ v  00     ¼ h ij e r j x i          (7.183)
                                    ij
                                      M M           M M
                                  0     0    00    00
                                K ¼ K xðÞ, K ¼ K xðÞ                 (7.184)
                                ^  0  ^  0  ^  00  ^  00
                                K ¼ K ^xðÞ, K ¼ K ^xðÞ               (7.185)
             The excess exit temperature vector of the fluid streams is obtained from
          Eq. (7.170):
              00  000  0   000  0  1     000     00        00  00  00  00
            Θ ¼ G Θ + Δ e G T +   G  G  ^ 000 ^0  e  00  e             D
                                           T + G V D + G K + Δ e G V
                 e e
            e
                                s

                                  00  00  1     00
                                                      D
                              + G ^ K +   G  G ^00  V ^00 ^          (7.186)
                                 e
                                        s
             The temperature dynamics in the real-time domain can be obtained by
          the use of the numerical inverse Laplace transform with FFT algorithm,
          Eq. (2.178).
          7.3.5 Dynamic model for startup problem
          If the heat exchanger initially has a uniform temperature,
                ^ t i xðÞ ¼^ t w,m xðÞ ¼ t 0 ð i ¼ 1, 2, …, M; m ¼ 1, 2, …, M w Þ  (7.187)
          and then at τ¼0 undergoes sudden step changes in the inlet fluid temper-
                                       _
                 0
          atures ^ t , thermal capacity rates C i , heat transfer parameters U im , and flow
                 k
                               0
                                   00
          rate distributions—g ij , g ik , g li , and g lk —and then keep constant in τ>0,
                                          000
          except the inlet fluid temperatures. The inlet fluid temperatures can change
                              0    0
          with time arbitrarily, ^ t ¼ ^ t τðÞ (τ>0; k¼1, 2, …, N ). The governing
                                                           0
                              k    k
          equation system (7.113)–() for the startup problem is expressed as
   370   371   372   373   374   375   376   377   378   379   380